Asia Mathematika

An International Journal. ISSN: 2457-0834 (online)

Volume 3, Issue 2, August 2019, Pages: 26-33

On d'Alembert's like functional equation involving an endomorphism

KH. Sabour1*, B. Fadli2 and S. Kabbaj1

1Department of Mathematics, Faculty of Sciences, IBN TOFAIL University, B.P.: 14000, Kenitra, Morocco
2Department of Mathematics, Faculty of Sciences, University of Chouaib Doukkali, B.P.: 24000, El Jadida, Morocco

Abstract

Given an (not necessarily involutive) endomorphism : G G of a group G we finnd the solutions f; g : G ! C of the following functional equation f(xy) 􀀀 f('(y)x) = 2g(x)g(y); x; y 2 G; in terms of characters and additive functions on G: This allows us to solve the more general equation f(xy) + g('(y)x) = h(x)h(y); x; y 2 G; in which f; g; h : G C are the unknown functions.

Preview

▷Download pdf

Reference

[1] B. Bouikhalene and E. Elqorachi, A class of functional equations on monoids, arXiv:1603.02065v1 [math.CA] 22 Feb 2016.
[2] J. d'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibration, I, Hist. Acad. Berlin 1747 (1747), 214-219.
[3] J. d'Alembert, Recherches sur la courbe que forme une corde tendue mise en vibration, II, Hist. Acad. Berlin 1747 (1747), 220-249.
[4] J. d'Alembert, Addition au Memoire sur la courbe que forme une corde tendue mise en vibration, Hist. Acad. Berlin 1750 (1750), 355-360.
[5] B. R. Ebanks and H. Stetkr, d'Alembert's other functional equation on groups with an involution, Aequationes Math. 89(1) (2015), 187-206.
[6] B. R. Ebanks and H. Stetkr, d'Alembert's other functional equation, Publ. Math. Debrecen 87(3-4) (2015), 319-349.
[7] B. Fadli, D. Zeglami and S. Kabbaj, A variant of Wilson's functional equation, Publ. Math. Debrecen 87(3-4) (2015), 415-427.
[8] B. Fadli, D. Zeglami and S. Kabbaj, A joint generalization of Van Vleck's and Kannappan's equations on groups, Adv. Pure Appl. Math. 6(3) (2015), 179-188.
[9] B. Fadli, S. Kabbaj, KH. Sabour and D. Zeglami, Functional equations on semigroups with an endomorphism, Acta Math. Hungar. 150(2) (2016), 363-371.
[10] B. Fadli, D. Zeglami and S. Kabbaj, An integral functional equation on groups under two measures, Proyecciones (Antofagasta), to appear.
[11] KH. Sabour, Wilson's functional equation with an endomorphism, Math-Recherche et Application 15 (2016), 32-39.
[12] H. Stetkr, Functional equations on groups, World Scientic Publishing Co, Singapore (2013).
[13] H. Stetkr, Functional equations on abelian groups with involution, Aequationes Math. 54(1-2) (1997), 144-172.
[14] H. Stetkr, A variant of d'Alembert's functional equation, Aequationes Math. 89 (2015), 657-662.

Visitors count


Join us