Volume 3, Issue 1, April 2019, Pages: 1-9
KH. Sabour2* , B. Fadli11 and S. Kabbaj2
1Department of Mathematics, Faculty of Sciences, University of Chouaib Doukkali, B.P.: 24000,
El Jadida, MOROCCO
2Department of Mathematics, Faculty of Sciences, IBN TOFAIL University, B.P.: 14000,
KENITRA, MOROCCO
Let M be a monoid and φ : M → M be an endomorphism (not necessarily involutive). In this paper, we
find the solutions f, g : M → C of each of the following functional equations
f(xy) − f(φ(y)x) = 2f(x)g(y); x, y ∈ M,
f(xy) + g(φ(y)x) = 2f(x)g(y); x, y ∈ M,
f(xy) + f(φ(y)x) = 2g(x)g(y); x, y ∈ M,
in terms of multiplicative functions on M:
Functional equation, d’Alembert, monoid, endomorphism.
1. B. Bouikhalene and E. Elqorachi, A class of functional equations on monoids, arXiv:1603.02065v1 [math.CA] 22 Feb 2016.
2. J. d’Alembert, Recherches sur la courbe que forme une corde tendue mise en vibration, I, Hist. Acad. Berlin (1747), 214-219.
3. J. d’Alembert, Recherches sur la courbe que forme une corde tendue mise en vibration, II, Hist. Acad. Berlin (1747) 220-249.
4. J. d’Alembert, Addition au M´emoire sur la courbe que forme une corde tendue mise en vibration, Hist. Acad. Berlin (1750), 355-360
5. B. R. Ebanks and H. Stetkær, d’Alembert’s other functional equation on monoids with an involution, Aequationes Math. 89(1) (2015), 187-206.
6. B. R. Ebanks and H. Stetkær, d’Alembert’s other functional equation, Publ. Math. Debrecen 87(3-4) (2015), 319-349.
7. B. Fadli, D. Zeglami and S. Kabbaj, A variant of Wilson’s functional equation, Publ. Math. Debrecen 87(3-4) (2015), 415-427.
8. B. Fadli, S. Kabbaj, KH. Sabour and D. Zeglami, Functional equations on semigroups with an endomorphism, Acta Math. Hungar. 150(2) (2016), 363-371.
9. KH. Sabour, Wilson’s functional equation with an endomorphism, Math-Recherche et Application 15 (2016), 32-39.
10. H. Stetkær, Functional Equations on Groups, World Scientific Publishing Co, Singapore (2013).
11. H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math. 54(1-2) (1997), 144-172.
12. H. Stetkær, A variant of d’Alembert’s functional equation, Aequationes Math. 89 (2015).
13. H. Stetkær, The cosine addition law with an additional term, Aequationes Math. 90(6) (2016), 1147-1168.
14. L. Sz´ekelyhidi, Convolution Type Functional Equations on Topological Abelian Groups, World Scientific, Publishing
Co. Pte. Ltd., New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei Chennai, 1991.