Volume 2, Issue 2, August 2018, Pages: 29-40
Hajira Dimou, Muaadh Almahalebi and Abdellatif Chahbi
Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
In the present paper, we characterize, in terms of multiplicative characters and additive functions, the continuous solutions of some functional equations for mapping defined on a group and taking valued in a complex Hilbert space with the Hadamard product.
D’Alembert’s functional equation, involutive automorphism, functional equation, Hilbert valued function, Hadamard product.
1. Dimou H. and Kabbaj S. , A generalization of variant of Wilson’s type Hilbert space valued functional equations. Proycecciones. 2017; 36 No.3 : 485-498 .
2. Ebanks B. R. and Stetkær H., D’Alembert’s other functional equation on monoids with an involution. Aequationes. Math. 2015 ; 89 : 187-206.
3. Fadli B., Zeglami D. and Kabbaj S., A variant of Wilson’s functional equation. Publ.Math. Debrecen. 2015 ; 87(3-4):415-427.
4. Kannapan P., A functional equation for the cosine, Can. Math. Bull. 1968 ; 2 : 495-498.
5. Sz)́kelyhidi L., D’Alembert’s functional equation on compact groups. Banach J. Math.Anal. 2007 ; 1 No. 2 : 221-226.
6. Stetkær H., A variant of d’Alembert’s functional equation . Aequat. Math. 2015 ; 89 : 657-662.
7. Stetkær H., D’Alembert’s and Wilson’s functional equations on step 2 nilpotent groups. 2004 ; 67 No. 3 : 1001-1011.
8. Stetkær H., Functional Equations on Groups. World Scientific Publishing Co., Singapore ,2013.
9. Stetkær H., A link between Wilson’s functional and d’Alembert’s functional equations. Aequat. Math. 2016 ; No. 2 :407-409.
10. Van Vleck E. B., A functional equation for the sine . Ann. Math. 1910 ; 7 : 161-165.
11. Wilson W. H., On a certain related functional equations. Proc. Amer. Math. Soc. 1920 ; 26 : 300-312.
12. Zeglami D., Tial M. and Fadli B., Wilson’s type Hilbert space valued functional equations. Adv. Pure Appl. Math. 2016 ; 7(3) : 189-196 .