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Abstract: In this paper, we investigate the vector-valued measures, absolutely continuous measures, and the Bochner-

Radon-Nikodym property for Banach spaces. These types of studies have a plethora of applications in stochastic

processes, representation theory, and recently in neural nets. We establish the necessary and sufficient conditions that

Banach space possesses the Radon-Nikodym property.
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1. Introduction

This article is dedicated to the Phillips-Radon-Nikodym theory for Banach space vector measures. In 1933, the

vector-valued measures were introduced by S. Bochner in [4], where the concept of integration was extended

to vector-valued functions such generalization is implemented as the limit of integrals of simple functions, first,

defining the integral of simple functions. Recently, vector-valued measures and Banach space integrals have

found wide applications in neural networks, probability theory, and stochastic processes of martingale-type [11]

and references therein.

Traditionally, the Radon-Nikodym theorems have three different intertwined features: measure theoreti-

cal, structural geometrical, and operator theoretic. In [4], S. Bochner constructed the integral of vector-valued

functions and showed each vector-valued function with a bounded variation on the unit interval, which has al-

most everywhere derivative can be restored by the Bochner integral procedure almost everywhere. G. Birkhoff

generalized Bochner’s results to include infinitely dimensional Hilbert and some Banach spaces [2], G. Birkhoff

showed that, in Hilbert spaces, an absolutely continuous function can be recovered from its derivative by

Bochner integration procedure, in modern interpretation, a vector-valued function determines a continuous

linear functional in the given Hilbert space via scalar product then application of the Riesz representation the-

orem provides the existence of the Riesz representation that provides the wanted derivative, namely, there is a

connection between an absolutely continuous function and a uniquely defined vector via the inner product [2,

3].

A review of classical literature can be found in the works of J. Diestel J.J. Uhl [7], P. R. Halmos [10],

and N. Bourbaki [3]; contemporary views in research of Z. Wang, G. J. Klir [22, 23, 24] and recent paper

of S. Okada, J. Rodriguez, and E. A. Sanchez-Perez [19]; D. Chen [5]; M. Martin and A. Rueda Zoca [18];
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and references therein. Structural features of the Radon-Nikodym theory were studied by M.A. Rieffel in [20,

21], who developed the notion of dentablity for general Banach spaces and showed that dentablity equals the

possession of the Radon-Nikodym property for a given Banach space.

The remainder of the paper is organized as follows. In Section 2, we consider properties of Bochner

integral in Banach spaces and some of their possible generalizations, In Section 3, we investigate the connection

between the geometrical structure of a Banach space and its possession of the Radon-Nikodym property due to

Rieffel ideals of dantablity of subsets of the Banach space. Section 4 is dedicated to three weak variants of the

Radon-Nikodym theorem.

2. The Radon-Nikodym property for Banach spaces

Let X,Y and Z be separable reflexive Banach spaces. Let (E,Σ, µ) be a σ -finite measure space. Let be a

-finite measure with finite variation .

We assume Λ : X × Y → Z is a bilinear bounded mapping such that

∥Λ (a, b)∥Z ≤ ∥a∥X ∥b∥Y (1)

for all a ∈ X and b ∈ Y . We denote Λ (a, b) ≡ ab for all a ∈ X, b ∈ Y .

Definition 2.1. A σ -finite measure µ is called decomposable if there is a collection {Dα} of disjoint sets such

that µ (Dα) <∞ for all αand µ (D) =
∑

α µ (D ∩Dα) for all .

We always suppose that the measure µ is decomposable.

Definition 2.2. For each D ∈ Σ, the variation of a vector measure η is the scalar set function defined by

V ar (η) (D) = |η| (D) = sup
Π(D)

∑
B∈Π(D)

∥µ (B)∥X , (2)

where supremum is taken for all collections {B} of partitions Π (D) of a set D .

Definition 2.3. The general Bochner integral, of a simple function χ : E → Y defined by

χ (x) =
∑

i=1,...,k

ai1Bi
(x)

here 1Bi
is the indicator functions of disjoint sets Bi ∈ Σ and ai ∈ Y , is defined by

∫
E

χ (x) dη (x) =
∑

i=1,...,k

Λ (η (Bi) , ai) ≡
∑

i=1,...,k

aiη (Bi) ∈ Z. (3)

Definition 2.4. The space S (E, Y, µ) consisted of all simple functions χ : E → Y . A sequence {χk} ⊂
S (E, Y, µ) is called to be fundamental in mean if

lim
k,m→∞

N (χk − χm) = lim
k,m→∞

∫
E

∥χk − χm∥Y dµ = 0. (4)
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Definition 2.5. A function f : E → Y is vector integrable with respect to vector measure η if there exists

a fundamental sequence {χk} of step functions convergent µ-almost everywhere to f and the integral of f is

given by ∫
E

fdη = lim
k→∞

∫
E

χkdη. (5)

Definition 2.6. The space L1 (E, Y, η) is a vector space of all η -integrable functions f : E → Y and with

linear operation defined by ∫
E

(αf + βg) dη = α

∫
E

fdη + β

∫
E

gdη ∈ Z (6)

for all f, g ∈ L1 (E, Y, η) and all scalars α and β .

Lemma 2.1. Let ν : Σ → Z be a σ -additive vector measure and f : E → Z be a function such that for each

ξ ∈ Z∗ we have

⟨ν (D) , ξ⟩ =
∫
D

⟨f, ξ⟩ dµ (7)

for all . Let f : E → Z be ν -measurable, then the identity

ν (D) =

∫
D

fdµ (8)

holds for all .

Proof. Indeed, for each , there is an increasing sequence of sets {Dk} ⊂ Σ such that µ (Dk) <∞ for all k and

D =
⋃

k {x ∈ D : ∥f (x)∥Z ≤ k} so that every set is a non-more than a countable union of sets of D of finite

measure µ . So, we have 〈∫
Dk

fdµ, ξ

〉
=

∫
Dk

⟨f, ξ⟩ dµ

for each ξ ∈ Z∗ , and ∫
Dk

⟨f, ξ⟩ dµ = ⟨ν (Dk) , ξ⟩

and

⟨ν (Dk) , ξ⟩ =
〈∫

Dk

fdµ, ξ

〉
,

therefore, we conclude

ν (Dk) =

∫
Dk

fdµ

and for finite measure, the statement is proven. Now, let ξ̃ ∈ Z∗ then a measure ν
(
ξ̃
)

be defined by

ν
(
ξ̃
)
(C) =

〈
ν (C) , ξ̃

〉
20
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for all C ∈ Σ. We obtain

ν
(
ξ̃
)
(Dk) =

〈
ν (Dk) , ξ̃

〉
=

〈∫
Dk

fdµ, ξ̃

〉
=

∫
Dk

〈
f, ξ̃
〉
dµ.

Thus, we obtain the Pettis-Bochner integral formula

ν (D) =

∫
D

fdµ

for all .

Theorem 2.1. Let η : Σ → LB (Y,Z) be a -finite measure with finite variation ϕ = V ar (η) . Then, the density

Ψ : E → LB (Y, Z) is such that the equality

η (D) ζ =

∫
D

Ψ(x) ζdµ (x) (9)

holds for all ζ ∈ Y and all .

Proof. If a function f : E → Z is weakly µ- measurable and locally separable then the function f is strongly

µ -measurable. Then, the function f : E → Z is defined by f ≡ Ψ(x) ζ , which proves the theorem.

Now, we assume Π is the set of all finite partitions π = {Bi} of B ∈ Σ so that µ (Bi) > 0. We

assume that, on Π, there is the order of refinement of partitions. For each partition π = {Bi} , we introduce

the step function

fπ =
∑
i

η (Bi) ζ

µ (Bi)

so that ∫
Bi

fπdµ = η (Bi) ζ

for all ζ ∈ Y and all Bi ∈ Σ.

Each partition π ∈ Π generates the σ -ring R (π), which is the collection of all finite unions of sets

of the partition π . Let {πk} is an increasing sequence of partitions πk ∈ Π. Then, {R (πk)} there is

an increasing sequence of σ -rings so that there is a union
⋃

k R (πk) that is a countable ring. The ring⋃
k R (πk) generates the σ -ring Ξ ⊂ Σ. We consider restrictions µ̃ = µ|Ξ and ν̃ = η (·) ζ|Ξ. Then,

ν̃ : Ξ → Z = LB (
⋃

k R (πk) , Z) is a measure with finite variation V ar (ν̃) ≤ V ar (η (·) ζ) for all ζ ∈ Y so that

ν̃ ≪ µ̃ . The average range Ar (B) for all B ∈ Σ of η is given by

Ar (B) =

{
η (D)

µ (D)
: D ∈ Σ ∩B

}
,

similarly, for all B̃ ∈ Ξ, we have

Ar
(
B̃
)
=

{
ν̃ (D)

µ̃ (D)
: D ∈ Ξ ∩ B̃

}
.
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We denote Ψ̃ : B̃ → LB
(⋃

k R (πk) , Z̃
)

so that

ν̃ (B) =

∫
B

Ψ̃dµ̃

for all B ∈ Ξ.

For every k , we define a conditional expectation Ek by

Ek (f) =
∑
D∈πk

1D
1

µ̃ (D)

∫
D

fdµ̃,

we assume f is step function f =
∑

i ai1Bi (x) where Bi ∈
⋃

k R (πk) and ai ∈ Z . For each step function f ,

we find a number k (f) such that Bi ∈
⋃

k=1,...,k(f)R (πk) for all k ≥ k (f) so that

Ek (f) =
∑
D∈πk

1D
1

µ̃ (D)

∑
i

aiµ̃ (B ∩Bi) = f.

The operators Ek are contraction projections on L1 (µ̃, Z) so that Ek (f) → f ∈ L1 (µ̃, Z) for all elements

f ∈ L1 (µ̃, Z) hence the set of all step functions is dense in L1 (µ̃, Z), and,

∑
D∈πk

1D
1

µ̃ (D)

∑
i

aiµ̃ (Bi) = fπk

so that the sequence {fπk
} is a fundamental in L1 (µ,Σ, Z).

We find a partition πD ∈ Π containing D so that∫
D

fπdµ =

∫
D

fπD
dµ = η (D) ζ

for all π ≥ πD . Thus, we prove that

η (D) ζ =

∫
D

fdµ.

Statement 1. We show that the identity

V ar (η) (D) =

∫
D

∥f (x)∥Z dµ (x)

holds for all D ∈ Σ.

Proof. Straightforwardly by N. Dinculeanu results, we have

V ar (η) (D) ≤
∫
D

∥f (x)∥Z dµ (x)
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for all D ∈ Σ. To show the reverse, we consider a fixed D ∈ Σ, ε > 0 and a disjoint partition π = {Bi} so

that
⋃

iBi = D , we obtain∫
D

|⟨f (x) , ξ⟩| dµ (x) ≤
∑
i

|⟨η (Bi) , ξ⟩|+ ε

≤
∑
i

∥η (Bi)∥Z + ε ≤ V ar (η) (D) + ε,

where ξ ∈ Z and

∥f (x)∥Z = sup
ξ∈Z∗

{|⟨f (x) , ξ⟩| : ∥ξ∥Z∗ ≤ 1}

for all x ∈ E . By the Radon-Nikodym theorem, there is a positive function ψ such that

V ar (η) (D) =

∫
D

ψ (x) dµ (x)

for all D ∈ Σ. Thus, we deduce

|⟨f (x) , ξ⟩| ≤ ψ (x)

for µ almost all x .

3. Deniability and its application to Radon-Nikodym property

In 1967, M.A. Rieffel introduced the notion of dentability, which provides the tools to establish a correlation

between the structure of a Banach space and the Radon-Nikodym property [20, 21].

Definition 3.1. Let Y be a Banach space. A bounded subset D of Y is called dentable if for any ε > 0 there

is an element ξ (ε) ∈ X such that ξ (ε) /∈ clos (hull (D\Bε (ξ (ε)))), where clos is the closure of a convex hull,

and Bε (ξ (ε)) is a ball of radius ε centered at ξ (ε).

Statement (Rieffel) 2. All relative norm compact subsets of a Banach space Y are dentable.

Proof. For each extreme element ξ of norm compact convex subset D , we obtain that the closure of

D\Bε (ξ) does not contain ξ for any ε > 0. The Krein–Milman theorem yields that ξ /∈ clos (hull (D\Bε (ξ))).

Statement (Rieffel) 3. If clos (hull (D)) is dentable then subset D is also dentable.

Proof. Let ε > 0 then we find an element ξ̃ /∈ clos (hull (D)) such that

ξ̃ /∈ clos
(
hull

(
clos (hull (D)) \B ε

2

(
ξ̃
)))

.

We select

ξ ∈ D\clos
(
hull

(
clos (hull (D)) \B ε

2

(
ξ̃
)))

then ξ ∈ B ε
2

(
ξ̃
)

therefore we have

ξ /∈ clos (hull (D\Bε (ξ))) .
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Definition 3.2. Let Y be a Banach space. A bounded subset D ∈ Σ is called (ξ, ε)-pure for vector measure

η with respect to µ if η(B)
µ(B) ∈ Bε (ξ) for all B ⊆ D such that µ (B) <∞ .

A convex subset D ∈ Y is called strongly smoothable if there exists some ξ ∈ Y \clos (D) and some

ζ ∈ S (Y ∗) = {ς ∈ Y ∗ : ∥ς∥ = 1} such that

{
ξ̃ ∈ B1 (Y ) : ζ

(
ξ̃
)
≥ ε
}
⊂ clos

(⋃
τ

{τ (D − ξ) : τ ≥ 0}

)

for each ε > 0.

Let X = Θ∗ , then a convex subset D ∈ Y is called weak-star smoothable if there exists some

ξ ∈ Y \weak∗clos (D) and some ζ ∈ Θ such that

{
ξ̃ ∈ B1 (X) : ζ

(
ξ̃
)
≥ ε
}
⊂ clos

(⋃
τ

{τ (D − ξ) : τ ≥ 0}

)

for each ε > 0.

Proposition 3.1. Let D ∈ Y be a closed convex bounded subset and let 0 ∈ D . Then, we have

1) for a subset D to be dentable it is necessary and sufficient that the set D0 = {ς ∈ Y ∗ : sup ⟨ς,D⟩ ≤ 1}
be strongly smoothable;

2) for a subset D to be strongly smoothable it is necessary and sufficient that D0 ={
ξ̃ ∈ Θ : sup

〈
ξ̃, D

〉
≤ 1
}

be weak-star dentable.

Proposition 3.2. Let D ∈ Y be a closed convex subset. Let C̃ ∈ Y ∗ be a closed convex weak-star subset.

Then, we have

1) D is dentable if and only if weak∗clos (imagY ∗∗ (D)) is weak-star dentable;

2) set C̃ is dentable if C̃ is weak-star dentable;

3) weak∗clos (imagY ∗∗ (D)) is weak-star strongly smoothable if D is strongly smoothable.

The main theorem for dentable spaces.

Theorem 3.1. Let Y be a Banach space. Let (E,Σ, µ) be a -finite measure space. Let η : Σ → Y be a vector

measure. Then, there exists a Bochner integrable function f : E → Y such that the identity

η (D) =

∫
D

f (x) dµ (x)

holds for all if and only if:

1) from µ (B) = 0 follows η (B) = 0 , B ∈ Σ ;

2) ϕ = V ar (η) <∞ ;

3) the average range of η is locally dentable set, namely, for given with finite measure, and any ε > 0

there exists a subset B ⊆ D such that µ (D\B) < ε and the average range.

Ar (B) =

 η
(
B̃
)

µ
(
B̃
) : B̃ ⊆ B,µ

(
B̃
)
> 0
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is a dentable set.

Proof. Let Π be the set of all finite disjoint partitions π = {Bi} of B ∈ Σ so that µ (Bi) > 0 as previously.

Then, Π is a directed set, for each partition π ∈ Π we define a simple function by

fπ =
∑
B∈π

η (B) 1B
µ (B)

.

For any ε > 0, we find a π̃ ∈ Π such that

∥fπ − fπ̃∥ < ε

for all π ≻ π̃ . Since ϕ = V ar (η) <∞ there is a finite measure set C ∈ Σ such that ϕ (E\C) < ε
3 . From 1),

we can find δ > 0 such that µ (B) < δ follows ϕ (B) < ε
6 .

Lemma 3.1. (Rieffel ) 2. Let Y be a Banach space. Let (E,Σ, µ) be a -finite measure space. Let η : Σ → Y

be a vector measure. Let 1), 2), and 3) as above. Then, for any ε > 0 , there are sequences {ξi} ⊂ Y and

{Bi} ⊂ Σ such that Bi is (ξ, ε)-pure for vector measure η with respect to µ for all i , and E =
⋃

iBi .

The proof is given by M.A. Rieffel in [20, 21].

By the Rieffel lemma, for any ε > 0, there are sequences {ξi} ⊂ Y and {Bi} ⊂ Σ such that disjointed

Bi is
(
ξi,

ε
6µ(D)

)
-pure for vector measure η for all i , so that µ (Bi) > 0 and D =

⋃
iBi . There is a number

k such that µ
(
D\
⋃

i=1,...,k Bi

)
< δ . If π̃ = {Bi : i = 1, ..., k} then we obtain ∥fπ − fπ̃∥ < ε for all π ≻ π̃ .

Since {fπ} is a mean fundamental, we can find an integrable convergent in mean function f such that∫
D

fdµ = lim
π

∫
D

fπdµ

for all .

If µ (D) = 0 then we have

η (D) =

∫
D

fdµ

since the measure η is µ-continuous.

If 0 < µ (D) <∞ then we obtain ∫
D

fπdµ = η (D)

for all partitions π ≻ π̃ thus we conclude

η (D) = lim
π

∫
D

fπdµ =

∫
D

fdµ,

which proves the theorem.

As a consequence, we have the following theorem.

Theorem 3.2. The Banach space possesses the Radon-Nikodym property if and only if each closed convex

bounded subset of this Banach space is dentable.
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Proof. We assume that Banach space Y possesses the Radon-Nikodym property. Then, we must show that

each closed convex bounded subset D of Y is dentable. We assume the reverse that D is closed convex
bounded non-dentable subset of Y and we presuppose that D belongs to unit ball in Y .

We take 0 < ε < 1 such that from ξ ∈ D follows ξ ∈ clos (hull (D\Bε (ξ))). We consider the

interval [0, 1) with the standard Lebesgue measure λ on it. By induction, we define the monotone sequence

{Ξk : Ξk ⊂ Ξk+1} of finite set algebras and additive mappings

{ϑk : Ξk → Y }

such that

1) the atoms of Ξk partition [0, 1) into half-open intervals
{
I1,k, I2,k, ..., Ij(k),k

}
;

2)
ϑk(Ii,k)
λ(Ii,k)

∈ D for all k and all 1 ≤ i ≤ j (k);

3) from Il,k+1 ⊂ Ii,k follows∥∥∥∥ϑk+1 (Ii,k+1)

λ (Il,k+1)
− ϑk+1 (Ii,k)

λ (Ii,k)

∥∥∥∥
Y

≥ 2k − 1

2k
ε;

4) we have ∥ϑk (B)− ϑk+1 (B)∥Y ≤ ε
2k
λ (B) for all B ∈ Ξk ;

5) ∥ϑk (B)∥Y ≤ λ (B) for all B ∈ Ξk ;

6) ∥∥∥∥ϑk (B)

λ (B)
− ϑk+1 (B)

λ (B)

∥∥∥∥
Y

≤ ε

2k

for all B ∈ Ξk such that λ (B) > 0.

We take Ξ0 = {∅, [0, 1)} and any ξ0 ∈ D and we define ϑ0 (∅) = 0 and ϑ0 ([0, 1)) = ξ0 . Assuming

that D is non-dentable set then there is a set
{
α1,1, ..., αj(1),1 : αj(1),i > 0

}
such that

∑
i=1,...,j(1) αi,1 = 1

and αi,1 ∈ D . We have ∥∥∥∥ϑ0 ([0, 1))λ ([0, 1))
− αi,1

∥∥∥∥
Y

≥ ∥ξ0 − ξi,1∥Y ≥ ε

and ∥∥∥∥∥∥ϑ0 ([0, 1))λ ([0, 1))
−

∑
i=1,...,j(1)

αi,1ξi,1

∥∥∥∥∥∥
Y

=

∥∥∥∥∥∥ξ0 −
∑

i=1,...,j(1)

αi,1ξi,1

∥∥∥∥∥∥
Y

<
ε

2k
.

We split [0, 1) into finite disjoint partition of half-open intervals
{
I1,1, I2,1, ..., Ij(k),1

}
so that λ (Ii,1) =

ξi,1 . Then, the algebra Ξ1 is a collection of subsets [0, 1) generated by
{
I1,1, I2,1, ..., Ij(k),1

}
. We define

ϑ1 : Ξ1 → Y by ϑ1 (Ii,1) = αi,1ξi,1 for all 1 ≤ i ≤ j (1).

By induction, we assume that Ξk and ϑk are defined and Ξk is a disjoint collection of half-open

intervals
{
I1,k, I2,k, ..., Ij(k),k

}
, and

ϑk(Ii,k)
λ(Il,k)

∈ D for each 1 ≤ i ≤ j (k), next, we define Ξk+1 and ϑk+1

so that there are
{
α1 (l) , ..., αs(l) (l) : αi (l) > 0

}
,
∑

i=1,...,s(l) αi (l) = 1, and
{
ξ1 (l) , ..., ξs(l) (l) : ξi (l) ∈ D

}
such that ∥∥∥∥ξi (l)− ϑk (Il,k)

λ (Il,k)

∥∥∥∥
Y

≥ ε
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and ∥∥∥∥∥∥ϑk (Il,k)λ (Il,k)
−

∑
i=1,...,s(l)

αi (l) ξi (l)

∥∥∥∥∥∥
Y

<
ε

2k
.

We split Il,k into pairwise disjoint half-open intervals
{
J1 (l) , J2 (l) , ..., Js(l) (l)

}
such that λ (Ji (l)) =

λ (Il,k)αi (l) for all 1 ≤ i ≤ s (l). So, algebra Ξk+1 is generated by
{
J1 (l) , J2 (l) , ..., Js(l) (l)

}
for 1 ≤ l ≤ j (k)

and ϑk+1 is defined ϑk+1 (Ji (l)) = λ (Ji (l)) ξi (l) on Ξk+1 .

It is easy to see that 1) -2) are satisfied. 3) is following from the estimate

∥∥∥∥ϑk+1 (Ji (l))

λ (Ji (l))
− ϑk+1 (Il,k)

λ (Il,k)

∥∥∥∥
Y

=≥

∥∥∥∥∥∥ξi (l)−
∑

i=1,...,s(l)

ϑk+1 (Ji (l))

λ (Il,k)

∥∥∥∥∥∥
Y

=

∥∥∥∥∥∥ξi (l)−
∑

i=1,...,s(l)

αi (l) ξi (l)

∥∥∥∥∥∥
Y

≥
∥∥∥∥ξi (l)− ϑk (Il,k)

λ (Il,k)

∥∥∥∥
Y

−

∥∥∥∥∥∥
∑

i=1,...,s(l)

αi (l) ξi (l)−
ϑk (Il,k)

λ (Il,k)

∥∥∥∥∥∥
Y

≥ ε− ε

2k
=

2k − 1

2k
ε.

4) can be obtained as follows

∥ϑk (Il,k)− ϑk+1 (Il,k)∥Y =

∥∥∥∥∥∥ϑk (Il,k)−
∑

i=1,...,s(l)

ϑk+1 (Ji (l))

∥∥∥∥∥∥
Y

=

∥∥∥∥∥∥ϑk (Il,k)−
∑

i=1,...,s(l)

λ (Il,k)αi (l) ξi (l)

∥∥∥∥∥∥
Y

= λ (Il,k)

∥∥∥∥∥∥ϑk (Il,k)λ (Il,k)
−

∑
i=1,...,s(l)

αi (l) ξi (l)

∥∥∥∥∥∥
Y

≤ λ (Il,k)
ε

2k

so that

∥ϑk (B)− ϑk+1 (B)∥Y ≤ λ (B)
ε

2k

for all B ∈ Ξk .

We denote Λ =
⋃

k Ξk an algebra of subsets of [0, 1). There is a limit

lim
k→∞

ϑk (B) = ϑ (B)

for all B ∈ Λ. The set function ϑ : Λ → Y is σ -additive and strongly additive on Λ =
⋃

k Ξk and

∥ϑ (B)∥Y ≤ λ (B) for all B ∈ Λ. Thus, the application of the Kluvanek extension theorem yields the existence

of a σ -additive set function ϑ̃ : Ξ → Y , which coincides with ϑ on Λ, where Ξ is a σ -algebra generated

by set algebra Λ.
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We have ∣∣∣〈f, ϑ̃ (B)
〉∣∣∣ = ∣∣∣lim

π

∑〈
f, ϑ̃ (Bi)

〉∣∣∣
= lim

π

∣∣∣∑〈
f, ϑ̃ (Bi)

〉∣∣∣ ≤ lim
π

∑∣∣∣〈f, ϑ̃ (Bi)
〉∣∣∣

≤ lim
π

∑
λ (Bi) = λ (B)

so that
∥∥∥ϑ̃ (B)

∥∥∥
Y
≤ λ (B) for all B ∈ Ξ, which means that ϑ̃ has a bounded variation.

By the Radon-Nikodym property, we have that function ϑ̃ is differentiable with respect to measure λ

so that

ϑ̃ (B) =

∫
B

fdλ

for all B ∈ Ξ.

For fixed B̃ ∈ Ξ, λ
(
B̃
)
> 0, we can find B ∈ Ξ, B ⊂ B̃ and λ (B) > 0 such that 0 < Ar

(
B̃
)
< ε

10 ,

but if we prove that Ar
(
B̃
)
≥ ε

4 for all B ∈ Ξ such that λ (B) > 0 then we obtain the contradiction and

each subset must be dentable.

For 4 ≤ k , we have ∥∥∥∥∥ ϑ̃k+1 (Il,k+1)

λ (Il,k+1)
− ϑ̃ (Il,k)

λ (Il,k)

∥∥∥∥∥
Y

≥ ε

2

and ∥∥∥ϑt(Il,k+1)
λ(Il,k+1)

− ϑt(Il,k)
λ(Il,k)

∥∥∥
Y
≥
∥∥∥ϑk+1(Il,k+1)

λ(Il,k+1)
− ϑk+1(Il,k)

λ(Il,k)

∥∥∥
Y
−
∥∥∥ϑk(Il,k)

λ(Il,k)
− ϑk+1(Il,k)

λ(Il,k)

∥∥∥
Y

−
∥∥∥ϑk+1(Il,k+1)

λ(Il,k+1)
− ϑt(Il,k+1)

λ(Il,k+1)

∥∥∥
Y

≥ 2k−1
2k

ε− ε
2k

−
∑

q=k+1,...,t−1

∥∥∥ϑq(Il,k+1)
λ(Il,k+1)

− ϑk+1(Il,k+1)
λ(Il,k+1)

∥∥∥
Y

≥ 2k−1
2k

ε− ε
2k

−
∑

q=k+1,...,t−1
ε
2q >

ε
2 ,

where t ≥ k + 1. We pass to the limit as t→ ∞ .

For each C ∈ Ξ, λ (C) > 0, there is a subset B ∈ Λ such that

λ (B\C) + λ (B\C) < ε

16
λ (C)

so that

λ (B\C) < ε
16λ (C)− λ (C\B) ≤

≤ ε
16λ (C ∩B) .

Since B is in Ξk for some k ≥ 4 we have B =
⋃

i∈D Ii,k . For some i0 ∈ D , we have

0 < λ (Ii0,k\C) <
ε

16
λ (Ii0,k ∩ C)

and

0 < λ (B\C) < ε

16
λ (B ∩ C)
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so that 0 < λ (Ii0,k\ (Ii0,k ∩ C)) < ε
16λ (Ii0,k ∩ C). Thus, we have Ii1,k ⊂ Ii0,k so that

0 < λ (Ii1,k+1\ (Ii1,k ∩ (Ii0,k ∩ C))) < ε

16
λ ((Ii1,k ∩ (Ii0,k ∩ C))) .

We obtain ∥∥∥∥∥ ϑ̃ (Ii1,k+1)

λ (Ii1,k+1)
− ϑ̃ (Ii0,k)

λ (Ii0,k)

∥∥∥∥∥
Y

≥ ε

2
,

∥∥∥∥∥ ϑ̃ (Ii0,k)λ (Ii0,k)
− ϑ̃ (Ii0,k ∩ C)
λ (Ii0,k ∩ C)

∥∥∥∥∥
Y

=
λ (Ii0,k\ (Ii0,k ∩ C))

λ (Ii0,k ∩ C)

∥∥∥∥∥ ϑ̃ (Ii0,k\ (Ii0,k ∩ C))
λ (Ii0,k\ (Ii0,k ∩ C))

− ϑ̃ (Ii0,k)

λ (Ii0,k)

∥∥∥∥∥
Y

and ∥∥∥∥∥ ϑ̃ (Ii1,k+1)

λ (Ii1,k+1)
− ϑ̃ (Ii1,k ∩ (Ii0,k ∩ C))
λ (Ii1,k ∩ (Ii0,k ∩ C))

∥∥∥∥∥
Y

≤ ε

8
.

Thus, we conclude ∥∥∥∥∥ ϑ̃ (Ii0,k ∩ C)
λ (Ii0,k ∩ C)

− ϑ̃ (Ii1,k ∩ (Ii0,k ∩ C))
λ (Ii1,k ∩ (Ii0,k ∩ C))

∥∥∥∥∥
Y

≥ ε

4
,

thus, we obtain Ar (ϑ) ≥ ε
4 , which proves the theorem.

Examples. All reflective spaces have the Radon-Nikodym property. Lebesgue space L1 ([0, 1]) and space

C0 do not possess the Radon-Nikodym property.

4. The Radon-Nikodym theory for general Bochner’s integral constructions

We assume that η : Σ → LB (Y, Z) is a σ -finite measure with finite variation ϕ = V ar (η), and Λ : X×Y → Z

is a bilinear bounded mapping, which will be denoted by Λ (a, b) = ab for all a ∈ X, b ∈ Y .

Theorem 4.1. Let ϕ be a scalar σ -finite measure and let the measure η be absolutely continuous with respect

to ϕ . Then, there exists a function

Ψ(η) (·) : E → LB (Y, Z) (10)

such that

1) we have

∥Ψ(η) (x)∥Y→Z

ϕ−a.e.
= 1;

2) let ⟨·, ·⟩ : Z × Z∗ → R be duality pairing then ⟨Ψ(η) (f) , ζ⟩ ∈ L1 (ϕ) for all ζ ∈ Z∗ and the identity

〈∫
D

f (x) dη (x) , ζ

〉
=

∫
D

⟨Ψ(η) (x) f (x) , ζ⟩ dϕ (x) (11)

holds for all f ∈ L1 (E, Y, η) and all ζ ∈ Z∗ and all D ∈ Σ .
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Proof. If η = 0 then Ψ (η) (·) = 0, the theorem has been proven. We presume η ̸= 0. We fix ξ ∈ Y and

ζ ∈ Z∗ , and define the scalar measure by

η (ξ, ζ) (D) = ⟨η (D) ξ, ζ⟩

for all D ∈ Σ, so that

|η (ξ, ζ)| ≤ ϕ ∥ξ∥Y ∥ζ∥Z∗ .

The classical Radon-Nikodym theorem yields the existence of a scalar locally ϕ -integrable function ψξζ so

that identities
η (ξ, ζ) = ϕψξζ

and
|η (ξ, ζ)| = ϕ |ψξζ |

hold ϕ -almost everywhere. For each x ∈ E and ξ ∈ Y , a continuous linear functional on Z∗ is given by

ψξ (x) : ξ → ψξζ (x)

and such that
|ψξ (x)| ≤ ∥ξ∥Y .

For each fixed x ∈ E , a linear continuous mapping is given by

Ψ (η) (x) (·) : ξ → ψξ (x)

so that
∥Ψ(η) (x)∥Y→Z ≤ 1.

For all x ∈ E , ξ ∈ Y , ζ ∈ Z∗ , we conclude

⟨Ψ(η) (x) ξ, ζ⟩ = ψξζ (x)

so that

⟨η (D) ξ, ζ⟩ =
∫
D

⟨Ψ(η) (x) ξ, ζ⟩ dϕ (x)

and 〈∫
D

χdη, ζ

〉
=

∫
D

⟨Ψ(η)χ (x) , ζ⟩ dϕ (x)

for all D ∈ Σ, where χ : E → Y is an arbitrary simple function.

Let f ∈ L1 (E, Y, η) then there exists a sequence {χk} of simple functions that converges in mean and

ϕ -almost everywhere to the function f . There is a number k0 such that the inequality

|⟨Ψ(η)χk, ζ⟩ − ⟨Ψ(η)χm, ζ⟩| ≤ ∥χk − χm∥Y ∥ζ∥Z∗

holds for all k,m ≥ k0 . Therefore, a sequence {⟨Ψ(η)χk, ζ⟩} is fundamental in and a sequence {⟨Ψ(η)χk, ζ⟩}
converges ϕ -almost everywhere to ⟨Ψ(η) f, ζ⟩ . Thus, for all ζ ∈ Z∗ , we obtain

lim
k→∞

∫
D

⟨Ψ(η)χk, ζ⟩ dϕ =

∫
D

⟨Ψ(η) f, ζ⟩ dϕ
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lim
k→∞

〈∫
D

χkdη, ζ

〉
=

〈∫
D

fdη, ζ

〉
,

thus

lim
k→∞

∫
D

χkdη =

∫
D

fdη.

Hence 〈∫
D

χkdη, ζ

〉
=

∫
D

⟨Ψ(η)χk, ζ⟩ dη

we have 〈∫
D

fdη, ζ

〉
=

∫
D

⟨Ψ(η) f, ζ⟩ dη

for all ζ ∈ Z∗ .

We estimate

|⟨η (D) ξ, ζ⟩| ≤
∫
D

ϕ ∥ξ∥Y ∥ζ∥Z∗ ∥Ψ(η) (x)∥Y→Z dϕ (x) .

We denote ϖ = ∥Ψ(η)∥Y→Z ϕ and we calculate

∥η (D)∥Y→Z ≤
∫
D

∥Ψ(η) (x)∥Y→Z dϕ (x) = ϖ (D) .

The variation ϕ is the least positive measure for which the inequality ∥η (D)∥Y→Z ≤ ϕ (D) holds for all

D ∈ Σ. Thus, we deduce ∥Ψ(η) (x)∥Y→Z

ϕ−a.e.
= 1. The theorem has been proven.

Theorem 4.2. Let µ be a σ -finite scalar measure on Σ . Let Υ : E → LB (Y, Z) be a function such that

∥Υ∥Y→Z is locally µ-integrable, and let ⟨Υξ, ζ⟩ is µ-integrable for all ξ ∈ Y and all ζ ∈ Z∗ . Then, there exists

a measure η : Σ → LB (Y,Z) with ϕ such that

〈∫
D

f (x) dη (x) , ζ

〉
=

∫
D

⟨Υ(x) f (x) , ζ⟩ dµ (x) (12)

for all f ∈ L1 (E, Y, ϕ) and all ζ ∈ Z∗ and all D ∈ Σ ; and∫
D

|φ| (x) dϕ (x) =
∫
D

∥Υ(x)∥Y→Z |φ| (x) dV ar (µ) (x) (13)

for all φ ∈ L1 (ϕ) and all D ∈ Σ , where ϕ = ∥Υ∥Y→Z V ar (µ) .

Proof. We define a set function

η (ξ, ζ) (D) =

∫
D

⟨Υξ, ζ⟩ dµ

for all ξ ∈ Y , ζ ∈ Z∗ , and D ∈ Σ. The continuous linear functional

η (ξ) (D) : ζ 7→ η (ξ, ζ) (D)
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satisfies the inequality

∥η (ξ) (D)∥Z ≤ ∥ξ∥Y
∫
D

∥Υ∥Y→Z dV ar (µ) .

We have

⟨η (D) ξ, ζ⟩ =
∫
D

⟨Υξ, ζ⟩ dµ

for all ξ ∈ Y , ζ ∈ Z∗ , and D ∈ Σ.

Let χ : E → Y be a simple function given by

χ (x) =
∑

i=1,...,k

ai1Bi
(x) ,

where 1Bi is the indicator function of disjoint sets Bi ∈ Σ and ai ∈ Y , then we obtain

〈∫
D
χdη, ζ

〉
=
∑

i=1,...,k ⟨aiη (Bi) , ζ⟩ =
=
∑

i=1,...,k

∫
Bi

⟨Υai, ζ⟩ dϕ =
∫
D
⟨Υχ, ζ⟩ dϕ

for all ζ ∈ Z∗ .

For each function f ∈ L1 (E, Y, ϕ), there is a sequence {χk} of simple functions such that χk
k→∞−→ f

ϕ -almost everywhere and in the topology of L1 (E, Y, ϕ). We obtain

∫
D

χkdη
k→∞−→

∫
D

fdη,

〈∫
D

χkdη, ζ

〉
k→∞−→

〈∫
D

fdη, ζ

〉
,

〈∫
D

χkdη, ζ

〉
=

∫
D

⟨Υ(χk) , ζ⟩ dµ

and 〈∫
D

fdη, ζ

〉
=

∫
D

⟨Υ(f) , ζ⟩ dµ

for all ζ ∈ Z∗ . Thus, we have

η (D) ξ =

∫
D

Υ(x) ξdµ ∈ Z

so η (D) ∈ LB (Y, Z) for all D ∈ Σ.

We assume φ ∈ L1 (ϕ) and ζ ∈ Z∗ and η ̸= 0. The set function ϕ is absolutely continuous with

respect to V ar (µ) thus there exists a locally V ar (µ)-integrable positive function g such that

∫
D

|φ| dϕ =

∫
D

g |φ| dV ar (µ) .
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The mapping Ψ (η) (·) : E → LB (Y,Z) is given by Υ = Ψ(η) g 1
h such that |h (x)| = 1, µ = hV ar (µ) and

V ar (µ) = h−1µ thus ϕ = g 1
hµ . Since ∥Ψ(η) (x)∥Y→Z

ϕ−a.e.
= 1 so that ∥Υ(x)∥Y→Z = g (x) holds µ-almost

everywhere since ∥Ψ(η) (x)∥Y→Z g (x) = g (x), then we take ϕ = ∥Υ∥Y→Z V ar (µ) and obtain∫
D

|φ| dϕ =

∫
D

∥Υ∥Y→Z |φ| dV ar (µ)

for all D ∈ Σ. The theorem has been proven.

Now, we formulate the third theorem of this section.

Theorem 4.3. Let µ be a σ -finite scalar measure on Σ . Let η : Σ → LB (Y,Z) be a vector measure with

V ar (η) <∞ , and let η be absolute continuous with respect to µ . Then, there exists a function Ψ(η) (·) : E →
LB (Y,Z) such that 〈∫

D

f (x) dη (x) , ζ

〉
=

∫
D

⟨Ψ(η) (x) f (x) , ζ⟩ dµ (x) (14)

for all f ∈ L1 (E, Y, V ar (η)) and all ζ ∈ Z∗ and all D ∈ Σ ; and∫
D

φ (x) dV ar (η) (x) =

∫
D

∥Ψ(η) (x)∥Y→Z φ (x) dV ar (µ) (x) (15)

for all φ ∈ L1 (V ar (η)) and all D ∈ Σ .
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