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Abstract: In this paper, Characterizations of stratified and transitive L -topologies and multi-fuzzifying topology are
introduced. First we introduce the concepts of stratified and transitive L -co-topology and stratified and transitive L -
closure operator to characterize the concept of stratified and transitive L -topology, where L is a complete MV -algebra.
Second, we introduce the concepts of multi-fuzzifying topology, L -fuzzifying co-neighborhood system, L -fuzzifying
co-contiguity, L -fuzzifying interior operator and L -fuzzifying closure operator to characterize multi-fuzzifying topology,
where L is a completely distributive complete residuated lattice satisfying the double negation.law, Characterizations
of stratified and transitive L -topology are introduced where L is a complete MV -algebra, Characterizations of

multi-fuzzifying topology are introduced where L is a completely distributive complete residuated lattice in which the

double negation law is satisfied.
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1. Introduction

Since the theory of fuzzy sets was introduced by [Zadeh (13)], many topological notions were introduced
and discussed in fuzzy setting. In [Chang (2)], introduced and studied the notion of fuzzy topology as a crisp
subset of the family of fuzzy subsets of an ordinary set. Also, [Lowen (7)], [Hutton (6)], [Pu and Liu (9)], and
[Wong (10, 11)], discussed respectively various aspects of fuzzy topology where in their approaches the fuzzy
topology was defined also as a crisp subset of the fuzzy power set of a nonempty set. [Goguen(3)], introduced
the concept of L -set (L - fuzzy set ) as a generalization of the concept of fuzzy set where L is some type
of lattice. It is worth to mention that [Hohle (5)] used L as a complete MV -algebra but [Ying (12)] used
L as a complete residuated lattice. The concept of complete residuated lattice was introduced by [Pavelka
(8)]. The concept of L -fuzzifying topology appeared in [Hohle (4)] under the name » L -fuzzy topology» ( cf.
Definition 4.6, Proposition 4.11 in [Hohle (4)] where L is a completely distributive complete lattice. In the
case of L =[0,1] this terminology traces back to [Ying (12)] studied the fuzzifying topology and elementarily
developed fuzzy topology from a new direction with semantic method of continuous valued logic. Fuzzifying
topology (resp. L -Fuzzifying topology) in the sense of M. S. Ying (resp. U. Hohle) was introduced as a fuzzy
subset (resp. an L -Fuzzy subset) of the power set of an ordinary set. [Hohle (5)] introduced and studied a
characterization of stratified and transitive L - topology by stratified and transitive L -interior operator K,
where L is a complete MV-algebra. A characterization of L -fuzzifying topology by L -fuzzifying neighborhood
system, where L is a completely distributive, was given also in [Hohle (5)]. Finally, [Hohle (5)] introduced a
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characterizations of stratified and transitive L - topology by L -contiguity and L -fuzzifying topology, where
L is a completely distributive complete MV-algebra. In this paper we introduce and discuss a generalization
of a result introduced by [Hohle (5)] in L -fuzzifying topology. Mainly we add Characterizations of stratified
and transitive L-topology and multi fuzzifying topology. In Section 1, Lattice theory and basic concepts
are introduced. In Section 2, Characterizations of multi fuzzifying topology are introduced where L is a
completely distributive complete residuated lattice in which the double negation law is satisfied. In Section 3,

L- fuzzifying neighborhood and L- fuzzifying closure operations are considered.
1.1. Lattice theory and basic concepts

Definition 1.1. (Hohle (5)]). The double negation law in a complete residuated lattice L is given as follows:
Va,be L, (a— 1) — L =a.

Definition 1.2. (Hohle (5)). A structure (L,V,A,%,—, L, T) is called a strictly two-sided commutative
quantale iff

(1) (L,V,A, L, T) is a complete lattice whose greatest and least element are T, L respectively,
(2) (L,*,T) is a commutative monoid,
(3)(a) = is distributive over arbitrary joins, i.e.,
a*Vie b5 =V es (axbj)Vae L, ¥{b;|je J} C L,
(b) — is a binary operation on L defined by :
a—=b=\V,,<pA Va,be L

Definition 1.3. (Hohle (5)). A structure (L,V,A,*,—, L, T) is called a complete MV- algebra iff the following

conditions are satisfied:
(1) (L,V,A,*x,—, L, T) is a strictly two-sided commutative quantale,

(2) Va,be L, (a—=b) >b=aVb.

Definition 1.4. (Pavelka (8), Ying (12)). A structure (L,V,A,x,—, L, T) is called a complete residuated

lattice iff
(1) (L,V,A, L, T) is a complete lattice whose greatest and least element are T, L respectively,

(2) (L,*,T) is a commutative monoid, i.e.,

(a) * is a commutative and associative binary operation on L, and
(b)VaeLaxT=Tx a=a,

(3)(a) * is isotone,

(b) — is a binary operation on L which is antitone in the first and isotone in the second variable,
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(¢c) — is couple with * as: axb<ciff a<b—c¢ V a,b,c€ L.

Definition 1.5. (Birkhoff (1)). Let L be a complete lattice. We say that A is distributive over arbitrary

joins iff
Waj:jeJ}t and Va € L, a A (Veya)) = Ve (aNay).

Corollary 1.1. (L,V,A,x,—, 1, T) is a complete MV- algebra iff (L,V,A,*,—, L, T) is a complete residuated
lattice satisfies the additional property (MV) (a —-b) - b=aVb Va,bec L.

Definition 1.6. (Hohle (5)). A structure (L,V,A,*,—, L, T) is called a complete MV- algebra iff the following

conditions are satisfied:
(1) (L,V,A,*x,—, L, T) is a strictly two-sided commutative quantale,

(2) Ya,be L, (a—b) =b=aVb.

Theorem 1.1 (Corollary 3.15 [Hohle (5)). Let (L, <,*) be a complete MV —algebra and @ = A. Furthermore
let (L, <) be a completely distributive lattice complete MV -algebra. Then L-fuzzifying topologies, L-fuzzy

contiguity relations and stratified and transitive L-topologies are equivalent concepts.

2. Multi Fuzzifying Topology

Definition 2.1. Let X be a nonempty set and. [X]|™ is the set of all msets whose elements are in X such
that no element in the mset occurs more than m times. The power mset P ([X]|™) of X is the set of all sub
msets of X. An element 7 : P ([X]|™) — I is called an multi- fuzzifying topology on X iff it satisfies the
following axioms:

(1) T(X) =T(¢) = 1,
(2) VA,B e P ([X]™),T(ANB) > T(A) AT(B),

(3) V{4, 15 € J} € P (IXI™), T(Ujes Aj) = Njes T(A;). The pair (X, T) is called an multi- fuzzifying

topological space.

Example 2.1. Let X = {x,x,y,y}, then [X]"= {%’%}

and P ([X]™) = {¢,
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Then 7 is multi- fuzzifying topology on X.

Remark 2.1 when m = 1, multi- fuzzifying topology = fuzzifying topology.
Definition 2.2. Let X be a nonempty set. A map F : P ([X]™) — I is called an multi-fuzzifying

co-topology (or the family of multi-fuzzifying closed sets) if it satisfies the following axioms:

(2) VA, B e P ([X]™), F(AUB) > F(A) A F(B),
(3) V{4 jjes} € P ([X]™), F(NjesAj) = NjesF(4;).

Definition 2.3 The family of multi- fuzzifying closed sets, denoted by F € I” (X1™) | is defined as follows:
F(A)=7(X — A) where X — A is the complement of A.

Definition 2.4 Let (X,7) be an multi- fuzzifying topological space and A C X, Let = € X. The multi-

X]nl

fuzzifying neighbourhood system of z, denoted by N, € I” (XI™) is defined as follows:

No(A) = V,yepeat(B):

Proposition 2.1. Let (X, 7) be an multi-fuzzifying topological space and let A, B € P ([X]™). Then Vz € X,

(2) AC B = N,(A) < No(B),
(3) If A is distributive over arbitrary joins.

Then N (AN B)= N,(A) A N,(B),

(4) No(A) < Vyexp(Ny(4) v No(B)) VB € P (X]™).

Proof. (1)(a) Nuo(X) =V, cpcx 7(B) =T because 7(X) =T.
(1)(b) Nu(@) = V,epc, 7(H) = L.
(2) Nu(A) = \/IeHgA T(H) < \/zeHgB 7(H) = Ny(B).

(3) From (2), we have N, (AN B) < N,(A) A N,(B), and

N(AN B) Veencans TH) = Veen,nmcans THL NV H2) > Vocp ca wem,cp T(HL N Ha)
\/mEngA, erQQB(T(Hl) AT(Hz)) 2 \/erlgA, erng(T(Hl) A T(H2))

vVl

VaeermcaTH) AV ep,cp T(H2) = 02 (A) A pu(B).

(4) Let « be a fixed point in X and let A, G be subsets of X s.t. z € G C A. Now,

(a) for every B € P(X) s.t. GN (X — B) # ¢, there exists yo € GN (X — B).
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Now, Nyo(A) =V yemcaT(H) > 7(G). Hence Vx5 Ny(A) > Ny, (4) > 7(G). And

(b) for every B € P(X) s.t. GN(X —B)=¢, Nu(B)=V,crprcanpg7(M)=7(G).

Hence (Ve x g Ny(A)) V No(B) 2 V,yeaea 7(G) = No(A) VB € P ([X]™).

Corollary 2.1 A ., N.(A) =7(4).

Theorem 2.1 For any z € X, A€ P ([X]|™), NA,ca VxeBgA T(B) =1(A)

Definition 2.5. The multi-fuzzifying derived set d,(A) of A is defined as follows:
d-(A)(z) = /\Bﬂ(Af{m}):zﬁ(l — Na(B)).
Lemma 2.1. d,(4)(z) =1— N,((X — A) U {z}).
Definition 2.6. The multi-fuzziyfying closure A € I of A € P ([X]™) is defined as follows:
Az) = /\m¢B2A(1 — F(B)).
Lemma 2.1. A(z) =1— N, (X — A).
Definition 2.7. For any A C X, the interior A° € IX of A, is defined as follows:  A°(x) = N,(A).

3. On multi-fuzzifying neighbourhoods and multi-fuzzifying closure operations

Definition 3.1. Let X be a nonempty set. A map ( )~: P ([X]™) — L% is called an multi-fuzzifying

closure operator if ()~ satisfies the following conditions:

(17) (@)” =1,
(27) (AuB)” =(A)” v (B)7,
(37) A<(4)7,

(47) (A)7(2) < Nyes((A)~ (W) A (B)™ (2)).

The multi-fuzzifying closure operator ( )~ defined in Definition 3.1 induced by the multi-fuzzifying

topology 7 will be denoted in this Section by ¢/, and one can have it as follows:
c(A)(x) =N (X —A) > L Vz e X.
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Remark 3.1. One can observe that the statements in Proposition 2.1 are generalizations of the corresponding
statements in Proposition 2.12 (Héhle, (1999)[22]). Note that if L satisfies the completely distributive law,

then it satisfies that A is distributive over arbitrary joins.
Proposition 3.1. Let (X,7) be an multi-fuzzifying topological space. Then:
(1) If L satisfies the double negation law, then N, (A) =cl.(X — A)(z) — L,
(3) A <cl-(A),
(4) AC B = c-(A) < cl:(B),
(5) c-(AUB) = c.(A)V d.(B).

Proof. (1) Since ¢l (X — A)(z) = Nz(A) — L, then

0(A) = (pe(A) = L) = L =cl (X — A)(z) — L.
(2) cdr(d)(x) = @u(X)— L=T = L=1VzeX. Then cl(¢) =1,
(3) fx € A, then cl(A)(z) = Ny(X-A)—>Ll=1—-1=T=A(z).

If x ¢ A, then cl(A)(x) > A(z).Hence cl (A) > A.

(4) Let AC B. Then ¢l (A)(x) = Ny(X—-A4)— L <N, (X-B)— L=cl(B)(x).
(5)

cl (AUB) = Ny(X — (AUB)) — L = N,((X — A)n(X - B)) - L
= (Ny(X = A) AN,(X = B)) = L= (No(X — A) = L)V (No(X — B) = L) = clo(A) V ¢l (B).

Definition 3.2. A stratified and transitive L-topology 7 on a nonempty set X is a subset of LX satisfies
the following conditions:

(01)1x, 14 €7,

(02) g1,92 ET=gq1Ng2 €T,

03){gjlieJ}ST7=V,es9; €T,

(YX1)ger, acL=(alx)*ger, (Truncation Condition)

(Tl)ger, ace L= (alx)Vge T, (Translation-invariance)

(T2)ger,ae L= g0 (a.lx) € 7. (Co-Stratification)
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The pair (X, 7) is called a stratified and transitive L-topological space.

Definition 3.3. Let X be a nonempty set. A map K : LX — LX is called a stratified and transitive interior

operator if K satisfies the following conditions:
(Ko) K(1x) = 1x,
(K1) f < g= K(f) < K(9),
(K2) K(f) NK(g) < K(f A g),
(Ks) K(f) < f,
(Ka) K(f) < K(K(f)),
(K5) (a.1x) = K(f) < K((a.1x) = f),
(Ks) (a.1x) V K(f) = K((a.1x) V f).

Definition 3.4. Let X be a nonempty set. An element ¢ € LX*F (XI™) ig called an L-fuzzy contiguity

relation on X iff ¢ fulfills the following axioms:
(c1) e(z, ) =L VoeX.
(c2) c(z,AUB) = c(z,A) V ¢(z, B), (Distributivity),
(c3) c(x,A) =T, whenever z € A,
(ca) (Nyepcly, A)) Ne(z, B) < c(z, A).  (Transitivity).

Theorem 3.1. If L is a complete MV -algebra, then the concept of stratified and transitive L-topology, and

the concept of stratified and transitive L- interior operator are equivalent notions.

Theorem 3.2 (Proposition 3.13 [5]). Let (X,7) be an multi-fuzzifying topological space, and let L satisfies
the completely distributive law then the L-fuzzifying neighborhood system (N.).cx satisfies the following

conditions:
(f1) N(X)=T, VzeX, (Boundary conditions)
(f2) N.(ANB)= N,(A) A N.(B), (Intersection property)
(usz) Nz(A) =L whenever x ¢ A
(us) Nu(A) <V ,ygp(Ny(A)V Ny (B)) VB € P(X). Furthermore 7(A) = A,y ©2(A4) VA€ P ([X]™).

Theorem 3.3 (Proposition 3.14 [5]). let L satisfies the completely distributive law and Let (N,),ex be a

system satisfies the properties (f1), (f2), (u3), (u4) in Theorem 3.2 above . Then (N)zex induces an multi-
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fuzzifying topology 7 on X by 7(A) = A
Nz (A) = VxeBgA T(B)~

zea Nz(A) VA € P ([X]™). Moreover the following formula holds

Theorem 1.4.4 (Corollary 3.15 [Hohle (5)). Let (L, <,*) be a complete MV —algebra and ® = A. Further-
more let (L, <) be a completely distributive lattice complete MV -algebra. Then multi-fuzzifying topologies,

L-fuzzy contiguity relations and stratified and transitive L-topologies are equivalent concepts.
3.2. Some Characterizations of stratified and transitive L-topology

In this section L is assumed to be a complete MV -algebra.

Definition 3.2.1. Define the binary operator ® on L is defined as follows:

a®B=((a—=>L)x(—>1)—1L

Definition 3.2.2. Define the binary operator A on L is defined as follows:

aAB=Veer, enp<aé:

Definition 3.2.3. A stratified and transitive L-co-topology F on a nonempty set X is a subset of L¥

satisfies the following conditions:
(co—01) 1x,14 € F,
(c0—02) g1.92€F =g Vg €F,
(co—=03) {gjljes} SF = Njes9i €F,
(co=>1) geF,ael=(alx)®geF,
(co—Ts) g€ F, ael=ghalxefl.

By making use of the concept of stratified and transitive L-co-topology we characterize the stratified

and transitive L-topology.

Theorem 3.2.1. Let 7 be a stratified and transitive L-topology on X . Define

Fr:P(X]™) = Las F;,={g€LX|(g— L) €7} Then F, is a stransitive and transitive L-co-topology
on X induces by a stratified and transitive L-topology 7 on X. Let F be a stransitive and transitive L-
co-topology on X . Define 7, : P ([X]™) — L as: 74 = {g € LX|(g— L) € F}. Then 74 is a stratified
and transitive L-topology on X induces by a stransitive and transitive L-co-topology F on X. Furthermore

T, =7and [, =I.
Proof. (A) (co—01) Ixer=(Ix =+ 1L)=1s€F, andlyer= (14 = L)=1x € F .

(co—02) g1,92€F=> (g1 > L), (2> L)eT= (1 > L)A(g2—>L)=(q1Vge) > LET

49



A. M. Seif

:>(gl\/92)6F7—~

(c0—03) {gjljes} CFr={gi—>LljeJ}Cr = V(g —=>L)=ANgi—=>Ler= Ngierl,.

JjedJ jedJ jedJ

(co=>1)gefFr,ael=(g—L)en(a—>L)el =(a—L)lx)x(g—L)er
= (= Lilx)x(g—L)—=LeFr, = (alx)®geF,.

(co—Ty) geFr,a€l=(g—L1l)eT,acl

= (9= 1) & (0= 11x) €72 (A sty 5 gord) = L

= V(A—)J.)eL7(/\—>J_)/\a.1X <g A=1)=yg Qa.lx er,.

B) O1) IxeFr=(1Ix—1l)=lsermpandlyeF = (1> L)=1x €.

(02) Let g, g2 €7p = (1= L) (2 > L)eF = (= L)V(g—>L)er
=(g1ANg2) > LeEF=(g1Ng2) ETp.

(03) {gjjjest Cr={9; > LIj€J}CF = Ncslg,=>L)€EF =V c;9 > LEF
= V,es 9 €T

1) gerp,ael=>@g—oL)eF, (a=1)el = (a->L)lx)®(g—L)eF
= ((a—=L)1x)®(g— 1) = Ler = ((alx)*g) €1p.

(T2) gerp,a€l=(g—L)elr, (a=1)el =(g— LA((a— L)1lx)EF

= (9= DA(a—L)dx) » Ler = (\/AEL,A N (et < gt A) S ler

= (Nooneroon) vaty > sA D) €T 2 Acpavany 2 A €T = g0 (@lx) €77
€)1, ={gel¥|g—L)er.} ={gel¥|gert=rand [, ={gel¥|(g— 1) e}
={gel¥gert=r.

Remark 3.2.1. (1) From conditions (01) and (> 1) in Definition 1.4.3 one can deduce that Voo € L, a.lx €
7 ( Indeed, from (01) we have that 1x € 7 so that Va € L, one can have from (> 1) that a.1x x1x € 7, i.e,

a.lx € T because a.lxy x1x = a.lx.).
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(2) We note that Condition (71) in Definition 1.4.3 can be obtained from conditions (01), (03) and (> 1)
( Indeed, from (01) and (D> 1) we have as above that Va € L, «a.lx € 7. Now let g € 7 so that from (03),
we have (a.lx)VgeT.).

Definition 3.2.4. Let X be a nonempty set. An element C € (L¥ )LX is called a stratified and transitive

L-closure operator on X if C' satisfies the following conditions:
(CO) C(1y) = 14,
(C1) f<g=C(f) <Clyg),
(C2) C(f)vC(g) = C(fVy),
(C3) C(f) = 1,
(C4) C(f) = C(C(f)),
(C5) (a.lx) ® C(f) = C((alx) ® f),
(C6) (a.1x) AC(f) = C((a.lx) A f).

The second characterization of stratified and transitive L-topology in this section is given now by making

use of stratified and transitive L-closure operator.

Theorem 3.2.2. Let K be a stratified and transitive L-interior operator. Define

Ck : LY — L¥ as: Og(f) = K(f -+ L) — L. Then Ck is a stratified and transitive L-closure operator on
X induces by a stratified and transitive L-interior operator K on X. Let C be a stratified and transitive
L-closure operator on X . Define K¢ : LX — LX as: Kqo(f) = C(f — L) — L. Then K¢ is a stratified
and transitive L-interior operator on X induces by a stratified and transitive L-closure operator C' on X
Furthermore K¢, = K and Cg, = C.

Proof. (A) (CO) OK(1¢) = K(1¢—>J_)—>J_:K(1x)—>J_:1X—)J_:1¢
(C1) Let f <g.So, Ck(f) = K(f—-1)—-1L<K(g—1l)—L=Ckyg

(C2) Cr(f)VCk(g) = (K(f— 1) = L)V(K(g—1)— 1)=(K(f—L)AK(@g—1) =L
>K(f—=LDA@g—1)—1L
=K((fvg) = 1) = L=Ck(fVy),

(C3) Ck(f) Kf=L)—=L1=2((—-1—=1=/
(C4) Ck(f) = K(f—=1)—=L=2KK(—1)—>L=K(Ck(f)—1)—=L=Cr(Ck(f),
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(C5 Cr(alx)® f)=K(elx)®f) > L) > L =K((alx) = L)x(f = 1)) = L
<((alx) = L«K(f—> 1) > L=(alx) > Lx(Cg(f) = 1) =L

=alxy ® CK(f>,

(C6) Cr((alx) N f) K(((alx)ANf) > L) = L=K((alx) > L)V(f—= 1) = L

(((alx) = L) VE(f = 1)) = L =(alx) ACk(f)

(B) (KO) Kc(lx) = O(lX—>J_)—>J_:C(1¢)—>J_:1¢—>J_le,

(K1) f<g=>g—>1<f—o1=Clg—>1L)<C(f—1)
=Clg—=L)=1L>2Cf—=1)— L= Ke(f) < Kelg)

(K2) Kc(f) A Kel(g) Cf—=L—=>Dn(Cle—=L)=>L)=(C(f—=>DVC(g—> 1) =1L

< C(f 2 V)vig— 1) > L=C((frg) = 1) = L= Ko(f Ag),
(K3) Ko(f) = C(f»1) s l<(fs1)oL="f
(K4) Ko(f) = C(f— L) —»L1L<CC(f—1) = L=C(Kc(f—1)— 1)=Kc(Kc(f)),

(K5) (a.lx) * Ke(f) (alx)*x(C(f=1L)—» L) =(alx > L)®C(f— 1) = L

C((alx = L)@ (f = 1) » L = C(((adx) * /) = L) = L = Ko((adx) * ),

IA I

(K6) alx VKc(f) = alxVv(C(f—-1) =1L =(alx—>L)=L)V(C([f—-1L)—=1)
((aly = DA C(f—= 1) = L=C(((aelx) = L)A(f—= 1)) = L
C(((Oz.lx) V)= 1) — L= Kc(Oz.lX vV f).

(C) One can easily deduce that K¢, = K and Cg, = C.
4. Characterizations of multi fuzzifying topology

In this section L is assumed to be a completely distributive complete residuated lattice, where L satisfies
the double negation law.

In (Corollary 2.15 [Héhle (5)] (see Theorem 1.4.4 )) proved that the L-fuzzy contiguity relations and
L-fuzzifying topologies are equivalent notions if L is a completely distributive complete MV-algebra. In the
following we prove that L-fuzzy contiguity relations and multi fuzzifying topology are equivalent notions just
if L is a completely distributive complete residuated lattice satisfies the double negation law so that we give a
generalization of U. Hohle’ s result.

In [Hohle (5)] from Theorems 1.4.2, 14.3, the concepts of L-fuzzifying topology and L-fuzzifying neigh-
borhood system are equivalent notions. Then our generalization of U. Hohle’s result is obtained if we prove

that multi fuzzifying contiguity relation and L-fuzzifying neighborhood system are equivalent notions.
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Theorem 4.1. Let N, be an L-fuzzifying neighborhood system. Define
Cory + X X P ([X]™) = L as: ¢u,)(v,A) = No(X — A) — L. Then ¢, , is an L-fuzzy contiguity
relation induces by L-fuzzifying neighborhood system N,. Let ¢ be an L-fuzzy contiguity relation. Define
(Ng)e : P ([X]™) = L as: (Ng)e(A) = ¢(x,X — A) — L. Then (N.). is an L-fuzzifying neighborhood
=cand (Ny)e,,, = (Nz).

system induces by L-fuzzy contiguity relation c. Furthermore ¢,

Proof. (A) (¢1) cvy(2,¢) = No(X —¢) & L=T — L =1

(¢2) cw) (1, AUB) = Ny(X—(AUB)) = L =N,((X-A)N(X-B))— L

(Ne(X = A) AN (Ne(X = B))) = L= (No(X = A) = L)V (No(X = B) = 1)

c(x, A) Ve(z, A),

(c3) Let z € A. Then ¢y, )(z,4) = N(X-A)—=>L1l=1L—-1=T

(ca) c(vpy(x,A) = N(X —A)— L>( ;/B(Ny(X —A)VN,(B)))— L

Ayes (N, (X = A) = 1) A (No(B%) = L) = (A, cp ey, A)) A cla, B).
(B) (f1) (Ne)e(X) =c(z,¢) > L=L =L =T,
(f2) (ND)o(ANB) = c(z,(X —A)U(X = B)) = L= (c(z,X — A)Ve(z, X — B)) = L
= (c(z, X —A) = L) A (c(@, X = B) = L) = pa(A) N pa(B),

= N,(A) A N,(B),

(uz) Let z ¢ A. Then (N,).(A) = ¢, X-A)—=>1=T—>1=1,
(ug) (P2)e(A) = c(@, X —A) > L < ((Ayepecly, X —A)) Ne(@, X — B)) — L
= \/yeBC(c(y,X —A) = 1L)V(c(z,X —B)— 1)

Vyes((Py)e(A)V (p)e(B).

(C) (P2)epy(A) = ¢, X —A) = L= (pz(4) = L) = L=9,(A) and
Clpn). (T, A) = (pp)e(X—A) > L=(c(z,A) > L)—= L
= c¢(z,A).

Definition 4.1. Let X be a nonempty set. An element d € LX*P (XI™) ig called an L-fuzzy co-contiguity

relation on X iff d satisfies the following axioms,
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(co—c)d(z,X)=T VaeeX,

(co—co) d(x, AN B) =d(x,A) ANd(z,B), (Distributivity)

(co—c3) d(x,A) =1  whenever z ¢ A,

(co—cq) V d(y,A)Vd(z,B) > d(z,A).

y¢B

Theorem 4.2. Let ¢ be an L-fuzzy contiguity relation on X . Define
de : X x P(X) = L as: de(x,A) = ¢(x,X — A) = L. Then d. is an L-fuzzy co-contiguity relation on X
induces by an L-fuzzy contiguity relation ¢ on X. Let d be an L-fuzzy co-contiguity relation on X . Define

cqg X x P(X)— L as: cg(z,A) =d(x,X — A) — L. Then ¢4 is an L-fuzzy contiguity relation on X induces

by L-fuzzy co-contiguity relation d on X. Furthermore ¢4, = ¢ and d., = d.
Proof. (A) (co—c1)de(z,X)=c(z,9) > L =1 — 1L =T,
(co—ca)de(z,ANB) = c(z,(X-—A)UX-B)) > L=(c(x, X —A)Ve(x, X —B)) = L
= (c(z, X —A) = L)A(c(z,X —B) — 1) =d.(z,A) Nd.(x, B),
(co—c3) Let z € X — A. Then ¢(z,X —A)=T. So, de(z,A) =T — L =1,
(co—ca)de(z,A) = c(z,X —A) = L <((Aepec(y, X —A)) ANe(z, X — B)) > L

< Vygpley, X —A4) = L) v(c(z, X = B) = 1) =V

sz de(y, A) V de(z, B).
(B) (c1) ca(z,¢) =d(z,X) > L=T — L =1,
(c2) calw, AUB) = d(z, (X —A)N(X—B)) > L= (dzX—A)Adx X —B)) > L
= (d(z,X — A) > L)V (d(z,X — B) > 1) = cq(z, A) V ca(x, B),
(c3) Let o € A.Then cq(w, A) =d(z, X —A) > L=1 — L =T,
(ca) ca(w,A) = d(@, X —A) = L>(V,gped(y. X — A) Vd(z,X — B)) = L

Ayese d(y, X —A) = L) A (d(z, X — B) = 1)

Nyes caly, A) A ca(z, B)

(C)dc (x,A) = colz,X —A)— L=((xz,A) — L)— L=d(z,A) and
cd, (z, A) = de(z,A%) - L =(c(z,4A) > L) —> L
= c(z,A).

Theorem 4.3. The concepts of multi fuzzifying topology and L-fuzzifying co-topology are equivalent notions.
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Definition 4.2. Let X be a nonempty set and Let « € X. The L-fuzzifying co-neighborhood system of z is
denoted by 1, € LT (XI™) and satisfies the following conditions:

(co— f1) ¥e(¢) = L, Vo € X, (Boundary conditions)
(co— fa) ba(AUB) =, (A) V ¢, (B), ( Intersection property)
(co—us) 1, (A) = T whenever z € A

(co—us) $a(A) > AWy (A) A(B)) VB € P ([X]™),

Theorem 4.4. Let ¢, be an L-fuzzifying neighborhood system. Define

(Ye)(vy) = P ([X]™) = L as: (Y2)(n,)(A) = No(A — 1) — L. Then (¢)(n,) is an L-fuzzifying co-
neighborhood system induces by L-fuzzifying neighborhood system N, on X. Let v, be an L-fuzzifying
co-neighborhood system. Define (¢z)(y,) : P ([X]™) — L as:

(Nz) ) (A) = Yz(A — L) — L. Then (N.),) is an L-fuzzifying neighborhood system induces by L-

fuzzifying co-neighborhood system ¢, on X. Furthermore (¢x)(n,), = to and (No)(p), = Na-
Proof. (A) (co— f1) (¥a)n)(6) = No(X) > L=T > L= L.
(co— f2) (W) vy (AUB) = L = N,(AUB) = L) = L= N,(A— L)A(B— 1)) = L
= (VoA = L) > L)V (No(B > L) = 1) = (d) ) (A) V (82) ) (B).
(co— ug) Let o ¢ A. Then N,(A°) = L so that (¢h,)(n,)(A) = Np(A— 1) = L=1— 1L =T.
(co—uq) (o) v,)(A) = No(A—= L) = L=V, gp(Ny(A— L)V N(B)) — L
Nygpe(Ny(A = L) = L) A (Ne(B°) — 1)
= Nyes(@y)v,) (A) A () (v,)(B))-
B) (f1) (Na)@)(X) =¢u(d) > L=L > 1L =T.
(f2) N2) ) (ANB) = ¢((ANB) = L) = L=(((A— L)u(B— 1)) — 1L
= (ho(A—= L)V (e(B— 1) =1L
= (A= L) > D) A@(B = L) = L) = (Na) ) (A) A (Na) (o) (B).
(uz) Let ¢ A. Then (Ny)y,(A) = p(A—1)— L=T—L=1.
(ug) (No),)(A) = ¥a(A—= L) > L<(Ayepe ¥y(A— L) AYe(X = B)) — L
Vyepe(Wy(A— 1) = L)V (4(X = B) — 1)

(Ve (Ny)w,)(A) V (Nz2) () (B).
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(C) (wx)(Nac)(wx)(A) = (NI)(wm)(A — L) — 1= (¢1(A) — l) — 1= wi(A) and

Definition 4.3. Let X be a nonempty set. A map ( )°: P ([X]™) — L% is called an L-fuzzifying interior

operator if ()° satisfies the following conditions:
(1%) (X)° =1x,

(2°) (ANB)° =(A)° A (B)°,

- y¢B

Theorem 4.5. Let N, be an L-fuzzifying neighborhood system. Define

()°: P ([X]™) = LY as: (A)%(z) = Nz(A). Then ()% is an L-fuzzifying interior operator induces by
L-fuzzifying neighborhood system N, on X. Let ()° be an L-fuzzifying interior operator. Define

Ny : P ([X]") = L as: (Ng)(yo(A) = (A)°(x). Then (Ng)()o is an L-fuzzifying neighborhood system induces

by L-fuzzifying interior operator ()° on X. Morcover (Ny)(y;, =N, and ()y,) , = ()°
Proof.
(A) (1°) (X)}’Vz(:z:) =N,(X)=T, Vz e X. So, (X)?vw =1x.
(2°) (ANB),, = No(ANB)=No(4) A No(4) =(A)3, A (B)S..
(89) (A3 (2) = No(4) < Aa),
(49) (D3 (1) = Nald) < V,ep (N (A)V Na(B) = Vs (A5, () V (B)3, ().
(B) (f1) (No)()o(X) = (X)°(2) = Lx(x) = T, ¥z € X.
(f2) (Vo) (ANB) = (AN B)Y(x) =(A)°(x) A (B)*(2) = (No) (o (4) A (N2) (e (B),
(u3) Let ¢ A. Then, (Ny)(y(A) = (A)°(z) < A(z) = L. So, (ga)()o(A) = L.
() (V) (o (4) = (A°@) < Vg5 (A°W) V(B @) = Vygn (V) o (A) V (Vo) (e (B)).

(C) (N2)( ey, (A) = (A () = No(A) and () (A)@) = (Vo) 9o (4) = (4)°(a).

Definition 4.4. Let X be a nonempty set. A map ( )~: P ([X]™) — L% is called an L-fuzzifying closure

operator if ()~ satisfies the following conditions:

(17) (@) =1,

(27) (AuB)” =(4)" v(B)7,
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37) A< (4)7,

(47) (A7 (@) < Ayep((A)~(y) A (B) (2))-
Theorem 4.6. Let ¢, be an L-fuzzifying co-neighborhood system. Define
()~: P ([X]™) = L* as: (A), (z) = ¥z(A). Then (), is an L-fuzzifying closure operator induces by

L-fuzzifying co-neighborhood system ¢, on X. Let ()~ be an L-fuzzifying closure operator. Define
Yyt P([X]™) = L as: (¢z)()-(A) = A7 (x). Then (¢)( o is an L-fuzzifying co-neighborhood system induces

by L-fuzzifying closure operator ()~ on X. Moreover (¢z) Yoy = 1y and ( );x( = ().

Proof. (A) (1) (¢),(x) = ¢a(¢) = L, Yo € X. So, (¢),(z) =14,

(27) (AUB),(z) = ¥a(AUB) =192(A)Va(B) = (A),(x) V(B), (2),
(37) (A)y (=) = Yu(4) = A),
(47) (A), (z) = %2(A) Z Nygp(Wy(A) N u(B)) = Aygp((A)y () A (B)y, (2))-

(B) (CO - fl) (’L/)w)( )’(¢) = (b_(.%‘) =14, Vo e X. SO,(%)( )*((b) =1
(co=f2) (We)()-(AUB) = (AUB) () = (A)"(z) V(B)"(x) = (a)()-(A) V (¥z) (- (B),

(co—wu3) Let x € A. Then (¢2)()-(A) = (A)"(2) = T. So,(¥z)()-(A) =T,
(co—ut) (1) -(4) = (A (@) < Agn((A) ) A (B (@) = Ayp((A)V () o, (B))

(C) W)y~ (A) = (A), (@) =¢a(A) and (), (A) = (¥2)()-(4) = (4)~ (2).

(¥z) Ty—

Remark 4.1. From (Corollary 2.15 [Héhle (1999)] (see Theorem 1.1 )) and Theorems 3.2.1, 3.2.2, 4.1, 4.2,4.3,
4.4, 4.5, 4.6 one can have the following Theorem:

Theorem 4.7. If L is a completely distributive complete MV -algebra then the concepts of stratified and
transitive L-topologies, stratified and transitive co- L-topologies, stratified and transitive L-interior opera-
tors, stratified and transitive L-closure operators, L-fuzzy contiguity relations, L-fuzzifying neighborhood
systems, L-fuzzy co-contiguity relations, multi fuzzifying topologies, L-fuzzifying co-topologies, L-fuzzifying
co-neighborhood systems, L-fuzzifying interior operators, L-fuzzifying closure operators are equivalent no-

tions.
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