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Abstract: In this paper, Characterizations of stratified and transitive L -topologies and multi-fuzzifying topology are

introduced. First we introduce the concepts of stratified and transitive L -co-topology and stratified and transitive L -

closure operator to characterize the concept of stratified and transitive L -topology, where L is a complete MV -algebra.

Second, we introduce the concepts of multi-fuzzifying topology, L -fuzzifying co-neighborhood system, L -fuzzifying

co-contiguity, L -fuzzifying interior operator and L -fuzzifying closure operator to characterize multi-fuzzifying topology,

where L is a completely distributive complete residuated lattice satisfying the double negation.law, Characterizations

of stratified and transitive L -topology are introduced where L is a complete MV -algebra, Characterizations of

multi-fuzzifying topology are introduced where L is a completely distributive complete residuated lattice in which the

double negation law is satisfied.
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1. Introduction

Since the theory of fuzzy sets was introduced by [Zadeh (13)], many topological notions were introduced

and discussed in fuzzy setting. In [Chang (2)], introduced and studied the notion of fuzzy topology as a crisp

subset of the family of fuzzy subsets of an ordinary set. Also, [Lowen (7)], [Hutton (6)], [Pu and Liu (9)], and

[Wong (10, 11)], discussed respectively various aspects of fuzzy topology where in their approaches the fuzzy

topology was defined also as a crisp subset of the fuzzy power set of a nonempty set. [Goguen(3)], introduced

the concept of L -set (L - fuzzy set ) as a generalization of the concept of fuzzy set where L is some type

of lattice. It is worth to mention that [Höhle (5)] used L as a complete MV -algebra but [Ying (12)] used

L as a complete residuated lattice. The concept of complete residuated lattice was introduced by [Pavelka

(8)]. The concept of L -fuzzifying topology appeared in [Höhle (4)] under the name ,,L -fuzzy topology ,, ( cf.

Definition 4.6, Proposition 4.11 in [Höhle (4)] where L is a completely distributive complete lattice. In the

case of L = [0, 1] this terminology traces back to [Ying (12)] studied the fuzzifying topology and elementarily

developed fuzzy topology from a new direction with semantic method of continuous valued logic. Fuzzifying

topology (resp. L -Fuzzifying topology) in the sense of M. S. Ying (resp. U. Höhle) was introduced as a fuzzy

subset (resp. an L -Fuzzy subset) of the power set of an ordinary set. [Höhle (5)] introduced and studied a

characterization of stratified and transitive L - topology by stratified and transitive L -interior operator K,

where L is a complete MV-algebra. A characterization of L -fuzzifying topology by L -fuzzifying neighborhood

system, where L is a completely distributive, was given also in [Höhle (5)]. Finally, [Höhle (5)] introduced a
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characterizations of stratified and transitive L - topology by L -contiguity and L -fuzzifying topology, where

L is a completely distributive complete MV-algebra. In this paper we introduce and discuss a generalization

of a result introduced by [Höhle (5)] in L -fuzzifying topology. Mainly we add Characterizations of stratified

and transitive L-topology and multi fuzzifying topology. In Section 1, Lattice theory and basic concepts

are introduced. In Section 2, Characterizations of multi fuzzifying topology are introduced where L is a

completely distributive complete residuated lattice in which the double negation law is satisfied. In Section 3,

L- fuzzifying neighborhood and L- fuzzifying closure operations are considered.

1.1. Lattice theory and basic concepts

Definition 1.1. (Höhle (5)]). The double negation law in a complete residuated lattice L is given as follows:

∀a, b ∈ L, (a→ ⊥) → ⊥ = a.

Definition 1.2. (Höhle (5)). A structure (L ,∨,∧ ,∗,→,⊥,⊤) is called a strictly two-sided commutative

quantale iff

(1) (L ,∨,∧,⊥,⊤) is a complete lattice whose greatest and least element are ⊤,⊥ respectively,

(2) (L ,∗,⊤) is a commutative monoid,

(3)(a) ∗ is distributive over arbitrary joins, i.e.,

a ∗
∨
j∈J bj =

∨
j∈J (a ∗ bj) ∀a ∈ L, ∀{bj |j ∈ J} ⊆ L,

(b) → is a binary operation on L defined by :

a→ b =
∨
λ∗a≤b λ ∀a, b ∈ L.

Definition 1.3. (Höhle (5)). A structure (L ,∨,∧ ,∗,→,⊥,⊤) is called a complete MV- algebra iff the following

conditions are satisfied:

(1) (L ,∨,∧ ,∗,→,⊥,⊤) is a strictly two-sided commutative quantale,

(2) ∀a, b ∈ L, (a→ b) → b = a ∨ b.

Definition 1.4. (Pavelka (8), Ying (12)). A structure (L ,∨,∧ ,∗,→,⊥,⊤) is called a complete residuated

lattice iff

(1) (L ,∨,∧,⊥,⊤) is a complete lattice whose greatest and least element are ⊤,⊥ respectively,

(2) (L ,∗,⊤) is a commutative monoid, i.e.,

(a) ∗ is a commutative and associative binary operation on L , and

(b) ∀ a ∈ L, a ∗ ⊤ = ⊤ ∗ a = a,

(3)(a) ∗ is isotone,

(b) → is a binary operation on L which is antitone in the first and isotone in the second variable,
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(c) → is couple with ∗ as: a ∗ b ≤ c iff a ≤ b→ c ∀ a, b, c ∈ L.

Definition 1.5. (Birkhoff (1)). Let L be a complete lattice. We say that ∧ is distributive over arbitrary

joins iff

∀{αj : j ∈ J} and ∀α ∈ L, α ∧ (
∨
j∈J αj) =

∨
j∈J(α ∧ αj).

Corollary 1.1. (L ,∨,∧ ,∗,→,⊥,⊤) is a complete MV- algebra iff (L ,∨,∧ ,∗,→,⊥,⊤) is a complete residuated

lattice satisfies the additional property (MV ) (a→ b) → b = a ∨ b ∀a, b ∈ L.

Definition 1.6. (Höhle (5)). A structure (L ,∨,∧ ,∗,→,⊥,⊤) is called a complete MV- algebra iff the following

conditions are satisfied:

(1) (L ,∨,∧ ,∗,→,⊥,⊤) is a strictly two-sided commutative quantale,

(2) ∀a, b ∈ L, (a→ b) → b = a ∨ b.

Theorem 1.1 (Corollary 3.15 [Höhle (5)). Let (L,≤, ∗) be a complete MV−algebra and ⊙ = ∧ . Furthermore

let (L,≤) be a completely distributive lattice complete MV -algebra. Then L-fuzzifying topologies, L -fuzzy

contiguity relations and stratified and transitive L-topologies are equivalent concepts.

2. Multi Fuzzifying Topology

Definition 2.1. Let X be a nonempty set and. [X]m is the set of all msets whose elements are in X such

that no element in the mset occurs more than m times. The power mset P ([X]m) of X is the set of all sub

msets of X . An element T : P ([X]m) → I is called an multi- fuzzifying topology on X iff it satisfies the

following axioms:

(1) T (X) = T (ϕ) = 1,

(2) ∀A,B ∈ P ([X]m), T (A ∩B) ≥ T (A) ∧ T (B),

(3) ∀{Aj |j ∈ J} ⊆ P ([X]m), T (
⋃
j∈J Aj) ≥

∧
j∈J T (Aj). The pair (X, T ) is called an multi- fuzzifying

topological space.

Example 2.1. Let X = {x, x, y, y} , then [X]m= { 2
x ,

2
y }

and P ([X]m) = {ϕ, 2x ,
2
y ,

1
{x}2

, 1
{y}2

, 4
{x,y} ,

2
{x,y}2,1

, 2
{x,y}1,2

, 1
{x,y}2,2

}. Define,

T (A) =



1 A = ϕ, 1
{x,y}2,2

1
2 A = 2

x ,
2
y ,

1
{x}2

, 1
{y}2

1
3 A = 4

{x,y} ,
2

{x,y}2,1
, 2
{x,y}1,2
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Then T is multi- fuzzifying topology on X.

Remark 2.1 when m = 1, multi- fuzzifying topology ⇒ fuzzifying topology.

Definition 2.2. Let X be a nonempty set. A map F : P ([X]m) → I is called an multi-fuzzifying

co-topology (or the family of multi-fuzzifying closed sets) if it satisfies the following axioms:

(1) F(X) = F(ϕ) = 1,

(2) ∀ A,B ∈ P ([X]m), F(A ∪B) ≥ F(A) ∧ F(B),

(3) ∀ {Aj|j∈J } ⊆ P ([X]m), F(∩j∈JAj) ≥ ∧j∈JF(Aj).

Definition 2.3 The family of multi- fuzzifying closed sets, denoted by F ∈ IP ([X]m), is defined as follows:

F (A) = τ(X −A) where X −A is the complement of A.

Definition 2.4 Let (X, τ) be an multi- fuzzifying topological space and A ⊆ X, Let x ∈ X. The multi-

fuzzifying neighbourhood system of x, denoted by Nx ∈ IP ([X]m), is defined as follows:

Nx(A) =
∨
x∈B⊆A τ(B).

Proposition 2.1. Let (X, τ) be an multi-fuzzifying topological space and let A,B ∈ P ([X]m). Then ∀x ∈ X ,

(1) Nx(X) = ⊤, Nx(ϕ) = ⊥,

(2) A ⊆ B ⇒ Nx(A) ≤ Nx(B),

(3) If ∧ is distributive over arbitrary joins.

Then Nx(A ∩B) = Nx(A) ∧Nx(B),

(4) Nx(A) ≤
∨
y∈X−B(Ny(A) ∨Nx(B)) ∀B ∈ P ([X]m).

Proof. (1)(a) Nx(X) =
∨
x∈B⊆X τ(B) = ⊤ because τ(X) = ⊤.

(1)(b) Nx(ϕ) =
∨
x∈H⊆ϕ τ(H) = ⊥.

(2) Nx(A) =
∨
x∈H⊆A τ(H) ≤

∨
x∈H⊆B τ(H) = Nx(B).

(3) From (2), we have Nx(A ∩B) ≤ Nx(A) ∧Nx(B), and

Nx(A ∩B) =
∨
x∈H⊆A∩B τ(H) =

∨
x∈H1∩H2⊆A∩B τ(H1 ∩H2) ≥

∨
x∈H1⊆A, x∈H2⊆B τ(H1 ∩H2)

≥
∨
x∈H1⊆A, x∈H2⊆B(τ(H1) ∧ τ(H2)) ≥

∨
x∈H1⊆A, x∈H2⊆B(τ(H1) ∧ τ(H2))

=
∨
x∈H1⊆A τ(H1) ∧

∨
x∈H2⊆B τ(H2) = φx(A) ∧ φx(B).

(4) Let x be a fixed point in X and let A,G be subsets of X s.t. x ∈ G ⊆ A. Now,

(a) for every B ∈ P (X) s.t. G ∩ (X −B) ̸= ϕ, there exists y0 ∈ G ∩ (X −B).
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Now, Ny0(A) =
∨
y0∈H⊆A τ(H) ≥ τ(G). Hence

∨
y∈X−B Ny(A) ≥ Ny0(A) ≥ τ(G). And

(b) for every B ∈ P (X) s.t. G ∩ (X −B) = ϕ, Nx(B) =
∨
x∈M⊆A∩B τ(M) ≥ τ(G).

Hence (
∨
y∈X−B Ny(A)) ∨Nx(B) ≥

∨
x∈G⊆A τ(G) = Nx(A) ∀B ∈ P ([X]m).

Corollary 2.1
∧
x∈ANx(A) = τ(A).

Theorem 2.1 For any x ∈ X, A ∈ P ([X]m),
∧
x∈A

∨
x∈B⊆A τ(B) = τ(A)

Definition 2.5. The multi-fuzzifying derived set dτ (A) of A is defined as follows:

dτ (A)(x) =
∧
B∩(A−{x})=ϕ(1−Nx(B)).

Lemma 2.1. dτ (A)(x) = 1−Nx((X −A) ∪ {x}).

Definition 2.6. The multi-fuzziyfying closure A ∈ IX of A ∈ P ([X]m) is defined as follows:

A(x) =
∧
x/∈B⊇A(1− F (B)).

Lemma 2.1. A(x) = 1−Nx(X −A).

Definition 2.7. For any A ⊆ X, the interior A◦ ∈ IX of A, is defined as follows: A◦(x) = Nx(A).

3. On multi-fuzzifying neighbourhoods and multi-fuzzifying closure operations

Definition 3.1. Let X be a nonempty set. A map ( )− : P ([X]m) → LX is called an multi-fuzzifying

closure operator if ( )− satisfies the following conditions:

(1−) (ϕ)− = 1ϕ,

(2−) (A ∪B)− = (A)− ∨ (B)−,

(3−) A ≤ (A)− ,

(4−) (A)−(x) ≤
∧
y/∈B((A)

−(y) ∧ (B)−(x)).

The multi-fuzzifying closure operator ( )− defined in Definition 3.1 induced by the multi-fuzzifying

topology τ will be denoted in this Section by clτ and one can have it as follows:

clτ (A)(x) = Nx(X −A) → ⊥ ∀x ∈ X.
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Remark 3.1. One can observe that the statements in Proposition 2.1 are generalizations of the corresponding

statements in Proposition 2.12 (Höhle, (1999)[22]). Note that if L satisfies the completely distributive law,

then it satisfies that ∧ is distributive over arbitrary joins.

Proposition 3.1. Let (X, τ) be an multi-fuzzifying topological space. Then:

(1) If L satisfies the double negation law, then Nx(A) = clτ (X −A)(x) → ⊥,

(3) A ≤ clτ (A),

(4) A ⊆ B ⇒ clτ (A) ≤ clτ (B),

(5) clτ (A ∪B) = clτ (A)∨ clτ (B).

Proof. (1) Since clτ (X −A)(x) = Nx(A) → ⊥, then

φx(A) = (φx(A) → ⊥) → ⊥ = clτ (X −A)(x) → ⊥.

(2) clτ (ϕ)(x) = φx(X) → ⊥ = ⊤ → ⊥ = ⊥ ∀x ∈ X. Then clτ (ϕ) = 1ϕ.

(3) If x ∈ A, then clτ (A)(x) = Nx(X −A) → ⊥ = ⊥ → ⊥ = ⊤ = A(x).

If x /∈ A, then clτ (A)(x) ≥ A(x).Hence clτ (A) ≥ A.

(4) Let A ⊆ B. Then clτ (A)(x) = Nx(X −A) → ⊥ ≤ Nx(X −B) → ⊥ = clτ (B)(x).

(5)

clτ (A ∪B) = Nx(X − (A ∪B)) → ⊥ = Nx((X −A) ∩ (X −B)) → ⊥

= (Nx(X −A) ∧Nx(X −B)) → ⊥ = (Nx(X −A) → ⊥) ∨ (Nx(X −B) → ⊥) = clτ (A) ∨ clτ (B).

Definition 3.2. A stratified and transitive L-topology τ on a nonempty set X is a subset of LX satisfies

the following conditions:

(01) 1X , 1ϕ ∈ τ,

(02) g1, g2 ∈ τ ⇒ g1 ∧ g2 ∈ τ,

(03) {gj |j ∈ J } ⊆ τ ⇒
∨
j∈J gj ∈ τ,

( ∑
1
)
g ∈ τ, a ∈ L⇒ (a.1X) ∗ g ∈ τ, (Truncation Condition)

(T1) g ∈ τ, a ∈ L⇒ (a.1X) ∨ g ∈ τ, (Translation-invariance)

(T2) g ∈ τ, a ∈ L⇒ g ▷ (a.1X) ∈ τ. (Co-Stratification)
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The pair (X, τ) is called a stratified and transitive L -topological space.

Definition 3.3. Let X be a nonempty set. A map K : LX → LX is called a stratified and transitive interior

operator if K satisfies the following conditions:

(K0) K(1X) = 1X ,

(K1) f ≤ g ⇒ K(f) ≤ K(g),

(K2) K(f) ∧K(g) ≤ K(f ∧ g),

(K3) K(f) ≤ f,

(K4) K(f) ≤ K(K(f)),

(K5) (a.1X) ∗K(f) ≤ K((a.1X) ∗ f),

(K6) (a.1X) ∨K(f) = K((a.1X) ∨ f).

Definition 3.4. Let X be a nonempty set. An element c ∈ LX×P ([X]m) is called an L-fuzzy contiguity

relation on X iff c fulfills the following axioms:

(c1) c(x, ϕ) = ⊥ ∀ x ∈ X.

(c2) c(x,A ∪B) = c(x,A) ∨ c(x,B), (Distributivity),

(c3) c(x,A) = ⊤ , whenever x ∈ A,

(c4) (
∧
y∈B c(y,A)) ∧ c(x,B) ≤ c(x,A). (Transitivity).

Theorem 3.1. If L is a complete MV -algebra, then the concept of stratified and transitive L-topology, and

the concept of stratified and transitive L - interior operator are equivalent notions.

Theorem 3.2 (Proposition 3.13 [5]). Let (X, τ) be an multi-fuzzifying topological space, and let L satisfies

the completely distributive law then the L -fuzzifying neighborhood system (Nx)x∈X satisfies the following

conditions:

(f1) Nx(X) = ⊤, ∀ x ∈ X, (Boundary conditions)

(f2) Nx(A ∩B) = Nx(A) ∧Nx(B), (Intersection property)

(u3) Nx(A) = ⊥ whenever x /∈ A

(u4) Nx(A) ≤
∨
y/∈B(Ny(A) ∨Nx(B)) ∀B ∈ P (X). Furthermore τ(A) =

∧
x∈A φx(A) ∀A ∈ P ([X]m).

Theorem 3.3 (Proposition 3.14 [5]). let L satisfies the completely distributive law and Let (Nx)x∈X be a

system satisfies the properties (f1), (f2), (u3), (u4) in Theorem 3.2 above . Then (Nx)x∈X induces an multi-
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fuzzifying topology τ on X by τ(A) =
∧
x∈A Nx(A) ∀A ∈ P ([X]m). Moreover the following formula holds

Nx(A) =
∨
x∈B⊆A τ(B).

Theorem 1.4.4 (Corollary 3.15 [Höhle (5)). Let (L,≤, ∗) be a complete MV−algebra and ⊙ = ∧ . Further-

more let (L,≤) be a completely distributive lattice complete MV -algebra. Then multi-fuzzifying topologies,

L -fuzzy contiguity relations and stratified and transitive L-topologies are equivalent concepts.

3.2. Some Characterizations of stratified and transitive L-topology

In this section L is assumed to be a complete MV -algebra.

Definition 3.2.1. Define the binary operator ⊛ on L is defined as follows:

α⊛ β = ((α→ ⊥) ∗ (β → ⊥)) → ⊥

Definition 3.2.2. Define the binary operator ∧−→ on L is defined as follows:

α∧−→β =
∨
ξ∈L, ξ∧β≤α ξ.

Definition 3.2.3. A stratified and transitive L-co -topology 𭟋 on a nonempty set X is a subset of LX

satisfies the following conditions:

(co− 01) 1X , 1ϕ ∈ 𭟋,

(co− 02) g1,g2 ∈ 𭟋 ⇒ g1 ∨ g2 ∈ 𭟋,

(co− 03) {gj|j∈J } ⊆ 𭟋 ⇒
∧
j∈J gj ∈ 𭟋,

(co−
∑

1) g ∈ 𭟋, α ∈ L⇒ (α.1X)⊛ g ∈ 𭟋,

(co− T2) g ∈ 𭟋, α ∈ L⇒ g ∧−→α.1X ∈ 𭟋.

By making use of the concept of stratified and transitive L-co-topology we characterize the stratified

and transitive L -topology.

Theorem 3.2.1. Let τ be a stratified and transitive L-topology on X . Define

𭟋τ : P ([X]m) → L as: 𭟋τ = {g ∈ LX |(g → ⊥) ∈ τ}. Then 𭟋τ is a stransitive and transitive L -co-topology

on X induces by a stratified and transitive L -topology τ on X. Let 𭟋 be a stransitive and transitive L-

co-topology on X . Define τ𭟋 : P ([X]m) → L as: τ𭟋 = {g ∈ LX |(g → ⊥) ∈ 𭟋}. Then τ𭟋 is a stratified

and transitive L-topology on X induces by a stransitive and transitive L-co-topology 𭟋 on X. Furthermore

τ𭟋τ = τ and 𭟋τ𭟋 = 𭟋.

Proof. (A) (co− 01) 1X ∈ τ ⇒ (1X → ⊥) = 1ϕ ∈ 𭟋τ and 1ϕ ∈ τ ⇒ (1ϕ → ⊥) = 1X ∈ 𭟋τ .

(co− 02) g1, g2 ∈ 𭟋τ ⇒ (g1 → ⊥), (g2 → ⊥) ∈ τ ⇒ (g1 → ⊥) ∧ (g2 → ⊥) = (g1 ∨ g2) → ⊥ ∈ τ
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⇒ (g1 ∨ g2) ∈ 𭟋τ .

(co− 03) {gj|j∈J } ⊆ 𭟋τ ⇒ {gj → ⊥|j ∈ J } ⊆ τ ⇒
∨
j∈J

(gj → ⊥) =
∧
j∈J

gj → ⊥ ∈ τ ⇒
∧
j∈J

gj ∈ 𭟋τ .

(co−
∑

1) g ∈ 𭟋τ , α ∈ L⇒ (g → ⊥) ∈ τ, (α→ ⊥) ∈ L ⇒ ((α→ ⊥).1X) ∗ (g → ⊥) ∈ τ

⇒ (((α→ ⊥).1X) ∗ (g → ⊥)) → ⊥ ∈ 𭟋τ ⇒ (α.1X)⊛ g ∈ 𭟋τ .

(co− T2) g ∈ 𭟋τ , α ∈ L⇒ (g → ⊥) ∈ τ, α ∈ L

⇒ (g → ⊥) ▷ ((α→ ⊥).1X) ∈ τ ⇒
(∧

λ∈L, λ∨(α→⊥).1X ≥ g→⊥ λ
)
→ ⊥

=
∨

(λ→⊥)∈L,(λ→⊥)∧α.1X ≤ g (λ→ ⊥) = g ∧−→α.1X ∈ 𭟋τ .

(B) (O1) 1X ∈ 𭟋 ⇒ (1X → ⊥) = 1ϕ ∈ τ𭟋 and 1ϕ ∈ 𭟋 ⇒ (1ϕ → ⊥) = 1X ∈ τ𭟋.

(O2) Let g1, g2 ∈ τ𭟋 ⇒ (g1 → ⊥), (g2 → ⊥) ∈ 𭟋 ⇒ (g1 → ⊥) ∨ (g2 → ⊥) ∈ 𭟋

⇒ (g1 ∧ g2) → ⊥ ∈ 𭟋 ⇒ (g1 ∧ g2) ∈ τ𭟋.

(O3) {gj|j∈J } ⊆ τ𭟋 ⇒ {gj → ⊥|j ∈ J } ⊆ 𭟋 ⇒
∧
j∈J(gj → ⊥) ∈ 𭟋 =

∨
j∈J gj → ⊥ ∈ 𭟋

⇒
∨
j∈J gj ∈ τ𭟋.

(
∑

1) g ∈ τ𭟋, α ∈ L⇒ (g → ⊥) ∈ 𭟋, (α→ ⊥) ∈ L ⇒ ((α→ ⊥).1X)⊛ (g → ⊥) ∈ 𭟋

⇒ ((α→ ⊥).1X)⊛ (g → ⊥)) → ⊥ ∈ τ𭟋 ⇒ ((α.1X) ∗ g) ∈ τ𭟋.

(T2) g ∈ τ𭟋, α ∈ L⇒ (g → ⊥) ∈ 𭟋, (α→ ⊥) ∈ L ⇒ (g → ⊥)∧−→((α→ ⊥).1X) ∈ 𭟋

⇒ ((g → ⊥)∧−→((α→ ⊥).1X)) → ⊥ ∈ τ𭟋 ⇒
(∨

λ∈L,λ ∧ (α→⊥).1X ≤ g→⊥ λ
)
→ ⊥ ∈ τ𭟋

⇒
(∧

(λ→⊥)∈L,(λ→⊥) ∨ α.1X ≥ g(λ→ ⊥)
)
∈ τ𭟋 ⇒

∧
λ∈L,λ ∨ α.1X ≥ g λ ∈ τ𭟋 ⇒ g ▷ (α.1X) ∈ τ𭟋.

(C) τ𭟋τ = {g ∈ LX |(g → ⊥) ∈ 𭟋τ} = {g ∈ LX |(g ∈ τ} = τ and 𭟋τ𭟋 = {g ∈ LX |(g → ⊥) ∈ τ𭟋}

= {g ∈ LX |(g ∈ 𭟋} = 𭟋.

Remark 3.2.1. (1) From conditions (01) and (
∑

1) in Definition 1.4.3 one can deduce that ∀α ∈ L, α.1X ∈
τ ( Indeed, from (01) we have that 1X ∈ τ so that ∀α ∈ L , one can have from (

∑
1) that α.1X ∗ 1X ∈ τ, i.e.,

α.1X ∈ τ because α.1X ∗ 1X = α.1X .).
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(2) We note that Condition (T1) in Definition 1.4.3 can be obtained from conditions (01), (03) and (
∑

1)

( Indeed, from (01) and (
∑

1) we have as above that ∀α ∈ L, α.1X ∈ τ. Now let g ∈ τ so that from (03),

we have (α.1X) ∨ g ∈ τ.).

Definition 3.2.4. Let X be a nonempty set. An element C ∈ (LX)L
X

is called a stratified and transitive

L -closure operator on X if C satisfies the following conditions:

(C0) C(1ϕ) = 1ϕ,

(C1) f ≤ g ⇒ C(f) ≤ C(g),

(C2) C(f) ∨ C(g) ≥ C(f ∨ g),

(C3) C(f) ≥ f,

(C4) C(f) ≥ C(C(f)),

(C5) (α.1X)⊛ C(f) ≥ C((α.1X)⊛ f),

(C6) (α.1X) ∧ C(f) = C((α.1X) ∧ f).

The second characterization of stratified and transitive L-topology in this section is given now by making

use of stratified and transitive L-closure operator.

Theorem 3.2.2. Let K be a stratified and transitive L-interior operator. Define

CK : LX → LX as: CK(f) = K(f → ⊥) → ⊥. Then CK is a stratified and transitive L-closure operator on

X induces by a stratified and transitive L -interior operator K on X. Let C be a stratified and transitive

L -closure operator on X . Define KC : LX → LX as: KC(f) = C(f → ⊥) → ⊥. Then KC is a stratified

and transitive L -interior operator on X induces by a stratified and transitive L -closure operator C on X

Furthermore KCK = K and CKC = C.

Proof. (A) (C0) CK(1ϕ) = K(1ϕ → ⊥) → ⊥ = K(1X) → ⊥ = 1X → ⊥ = 1ϕ

(C1) Let f ≤ g. So, CK(f) = K(f → ⊥) → ⊥ ≤ K(g → ⊥) → ⊥ = CKg

(C2) CK(f) ∨ CK(g) = (K(f → ⊥) → ⊥) ∨ (K(g → ⊥) → ⊥) = (K(f → ⊥) ∧K(g → ⊥)) → ⊥

≥ K((f → ⊥) ∧ (g → ⊥)) → ⊥

= K((f ∨ g) → ⊥)) → ⊥ = CK(f ∨ g),

(C3) CK(f) = K(f → ⊥) → ⊥ ≥ (f → ⊥) → ⊥ = f,

(C4) CK(f) = K(f → ⊥) → ⊥ ≥ K(K(f → ⊥)) → ⊥ = K((CK(f) → ⊥)) → ⊥ = CK(CK(f)),
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(C5) CK((α.1X)⊛ f) = K(((α.1X)⊛ f) → ⊥) → ⊥ = K((α.1X) → ⊥) ∗ (f → ⊥)) → ⊥

≤ ((α.1X) → ⊥ ∗K(f → ⊥)) → ⊥ = (α.1X) → ⊥ ∗ (CK(f) → ⊥)) → ⊥

= α.1X ⊛ CK(f),

(C6) CK((α.1X) ∧ f) = K(((α.1X) ∧ f) → ⊥) → ⊥ = K(((α.1X) → ⊥) ∨ (f → ⊥)) → ⊥
= (((α.1X) → ⊥) ∨K(f → ⊥)) → ⊥ = (α.1X) ∧ CK(f)

(B) (K0) KC(1X) = C(1X → ⊥) → ⊥ = C(1ϕ) → ⊥ = 1ϕ → ⊥ = 1X ,

(K1) f ≤ g ⇒ g → ⊥ ≤ f → ⊥ = C(g → ⊥) ≤ C(f → ⊥)

⇒ C(g → ⊥) → ⊥ ≥ C(f → ⊥) → ⊥ ⇒ KC(f) ≤ KC(g)

(K2) KC(f) ∧KC(g) = (C(f → ⊥) → ⊥) ∧ (C(g → ⊥) → ⊥) = (C(f → ⊥) ∨ C(g → ⊥)) → ⊥
≤ C((f → ⊥) ∨ (g → ⊥)) → ⊥ = C((f ∧ g) → ⊥) → ⊥ = KC(f ∧ g),

(K3) KC(f) = C(f → ⊥) → ⊥ ≤ (f → ⊥) → ⊥ = f,

(K4) KC(f) = C(f → ⊥) → ⊥ ≤ C(C(f → ⊥)) → ⊥ = C(KC(f → ⊥) → ⊥) = KC(KC(f)),

(K5) (α.1X) ∗KC(f) = (α.1X) ∗ (C(f → ⊥) → ⊥) = ((α.1X → ⊥)⊛ C(f → ⊥)) → ⊥
≤ C((α.1X → ⊥)⊛ (f → ⊥)) → ⊥ = C(((α.1X) ∗ f) → ⊥) → ⊥ = KC((α.1X) ∗ f),

(K6) α.1X ∨KC(f) = α.1X ∨ (C(f → ⊥) → ⊥) = ((α.1X → ⊥) → ⊥) ∨ (C(f → ⊥) → ⊥)
= ((α.1X → ⊥) ∧ (C(f → ⊥))) → ⊥ = C(((α.1X) → ⊥) ∧ (f → ⊥)) → ⊥
= C(((α.1X) ∨ f) → ⊥) → ⊥ = KC(α.1X ∨ f).

(C) One can easily deduce that KCK = K and CKC = C.

4. Characterizations of multi fuzzifying topology

In this section L is assumed to be a completely distributive complete residuated lattice, where L satisfies

the double negation law.

In (Corollary 2.15 [Höhle (5)] (see Theorem 1.4.4 )) proved that the L-fuzzy contiguity relations and

L-fuzzifying topologies are equivalent notions if L is a completely distributive complete MV-algebra. In the

following we prove that L -fuzzy contiguity relations and multi fuzzifying topology are equivalent notions just

if L is a completely distributive complete residuated lattice satisfies the double negation law so that we give a

generalization of U. Höhle , s result.

In [Höhle (5)] from Theorems 1.4.2, 14.3, the concepts of L -fuzzifying topology and L-fuzzifying neigh-

borhood system are equivalent notions. Then our generalization of U. Höhle ,s result is obtained if we prove

that multi fuzzifying contiguity relation and L-fuzzifying neighborhood system are equivalent notions.
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Theorem 4.1. Let Nx be an L -fuzzifying neighborhood system. Define

c
(φx)

: X × P ([X]m) → L as : c(Nx)(x,A) = Nx(X − A) → ⊥. Then c
(Nx)

is an L-fuzzy contiguity

relation induces by L -fuzzifying neighborhood system Nx. Let c be an L-fuzzy contiguity relation. Define

(Nx)c : P ([X]m) → L as: (Nx)c(A) = c(x,X − A) → ⊥. Then (Nx)c is an L -fuzzifying neighborhood

system induces by L-fuzzy contiguity relation c. Furthermore c
(Nx)c

= c and (Nx)c(φx)
= (Nx).

Proof. (A) (c1) c(Nx)(x, ϕ) = Nx(X − ϕ) → ⊥ = ⊤ → ⊥ = ⊥

(c2) c(Nx)(x,A ∪B) = Nx(X − (A ∪B)) → ⊥ = Nx((X −A) ∩ (X −B)) → ⊥

= ((Nx(X −A)) ∧ (Nx(X −B))) → ⊥ = (Nx(X −A) → ⊥) ∨ (Nx(X −B) → ⊥)

= c(x,A) ∨ c(x,A),

(c3) Let x ∈ A. Then c(Nx)(x,A) = Nx(X −A) → ⊥ = ⊥ → ⊥ = ⊤

(c4) c(Nx)(x,A) = Nx(X −A) → ⊥ ≥ (
∨
y/∈B

(Ny(X −A) ∨Nx(B))) → ⊥

=
∧
y∈B(Ny(X −A) → ⊥) ∧ (Nx(B

c) → ⊥) = (
∧
y∈B c(y,A)) ∧ c(x,B).

(B) (f1) (Nx)c(X) = c(x, ϕ) → ⊥ = ⊥ → ⊥ = ⊤,

(f2) (Nx)c(A ∩B) = c(x, (X −A) ∪ (X −B)) → ⊥ = (c(x,X −A) ∨ c(x,X −B)) → ⊥

= (c(x,X −A) → ⊥) ∧ (c(x,X −B) → ⊥) = φx(A) ∧ φx(B),

= Nx(A) ∧Nx(B),

(u3) Let x /∈ A. Then (Nx)c(A) = c(x,X −A) → ⊥ = ⊤ → ⊥ = ⊥,

(u4) (φx)c(A) = c(x,X −A) → ⊥ ≤ ((
∧
y∈Bc c(y,X −A)) ∧ c(x,X −B)) → ⊥

=
∨
y∈Bc(c(y,X −A) → ⊥) ∨ (c(x,X −B) → ⊥)

=
∨
y/∈B((φy)c(A) ∨ (φx)c(B).

(C) (φx)c(φx)
(A) = c(φx)(x,X −A) → ⊥ = (φx(A) → ⊥) → ⊥ = φx(A) and

c(φx)c(x,A) = (φx)c(X −A) → ⊥ = (c(x,A) → ⊥) → ⊥

= c(x,A).

Definition 4.1. Let X be a nonempty set. An element d ∈ LX×P ([X]m) is called an L -fuzzy co-contiguity

relation on X iff d satisfies the following axioms,
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(co− c1) d(x,X) = ⊤ ∀ x ∈ X,

(co− c2) d(x,A ∩B) = d(x,A) ∧ d(x,B), (Distributivity)

(co− c3) d(x,A) = ⊥ whenever x /∈ A,

(co− c4)
∨
y/∈B

d(y,A) ∨ d(x,B) ≥ d(x,A).

Theorem 4.2. Let c be an L -fuzzy contiguity relation on X . Define

dc : X × P (X) → L as: dc(x,A) = c(x,X − A) → ⊥. Then dc is an L -fuzzy co-contiguity relation on X

induces by an L-fuzzy contiguity relation c on X. Let d be an L-fuzzy co-contiguity relation on X . Define

cd :X × P (X) → L as: cd(x,A) = d(x,X − A) → ⊥. Then cd is an L-fuzzy contiguity relation on X induces

by L-fuzzy co-contiguity relation d on X. Furthermore cdc = c and dcd = d.

Proof. (A) (co− c1) dc(x,X) = c(x, ϕ) → ⊥ = ⊥ → ⊥ = ⊤,

(co− c2)dc(x,A ∩B) = c(x, (X −A) ∪ (X −B)) → ⊥ = (c(x,X −A) ∨ c(x,X −B)) → ⊥

= (c(x,X −A) → ⊥) ∧ (c(x,X −B) → ⊥) = dc(x,A) ∧ dc(x,B),

(co− c3) Let x ∈ X −A. Then c(x,X −A) = ⊤. So, dc(x,A) = ⊤ → ⊥ = ⊥,

(co− c4)dc(x,A) = c(x,X −A) → ⊥ ≤ ((
∧
y∈Bc c(y,X −A)) ∧ c(x,X −B)) → ⊥

≤
∨
y/∈B(c(y,X −A) → ⊥) ∨ (c(x,X −B) → ⊥) =

∨
y/∈B dc(y,A) ∨ dc(x,B).

(B) (c1) cd(x, ϕ) = d(x,X) → ⊥ = ⊤ → ⊥ = ⊥,

(c2) cd(x,A ∪B) = d(x, (X −A) ∩ (X −B)) → ⊥ = (d(x,X −A) ∧ d(x,X −B)) → ⊥

= (d(x,X −A) → ⊥) ∨ (d(x,X −B) → ⊥) = cd(x,A) ∨ cd(x,B),

(c3) Let x ∈ A.Then cd(x,A) = d(x,X −A) → ⊥ = ⊥ → ⊥ = ⊤,

(c4) cd(x,A) = d(x,X −A) → ⊥ ≥ (
∨
y/∈Bc d(y,X −A)) ∨ d(x,X −B)) → ⊥

=
∧
y/∈Bc d(y,X −A) → ⊥) ∧ (d(x,X −B) → ⊥)

=
∧
y∈B cd(y,A) ∧ cd(x,B)

(C) dcd(x,A) = cd(x,X −A) → ⊥ = (d(x,A) → ⊥) → ⊥ = d(x,A) and

cdc(x,A) = dc(x,A
c) → ⊥ = (c(x,A) → ⊥) → ⊥

= c(x,A).

Theorem 4.3. The concepts of multi fuzzifying topology and L-fuzzifying co-topology are equivalent notions.
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Definition 4.2. Let X be a nonempty set and Let x ∈ X. The L-fuzzifying co-neighborhood system of x is

denoted by ψx ∈ LP ([X]m) and satisfies the following conditions:

(co− f1) ψx(ϕ) = ⊥, ∀x ∈ X, (Boundary conditions)

(co− f2) ψx(A ∪B) = ψx(A) ∨ ψx(B), ( Intersection property)

(co− u3) ψx(A) = ⊤ whenever x ∈ A

(co− u4) ψx(A) ≥
∧
y∈B(ψy(A) ∧ ψx(B)) ∀B ∈ P ([X]m).

Theorem 4.4. Let φx be an L-fuzzifying neighborhood system. Define

(ψx)(Nx) : P ([X]m) → L as: (ψx)(Nx)(A) = Nx(A → ⊥) → ⊥. Then (ψx)(Nx) is an L-fuzzifying co-

neighborhood system induces by L -fuzzifying neighborhood system Nx on X. Let ψx be an L-fuzzifying

co-neighborhood system. Define (φx)(ψx) : P ([X]m) → L as:

(Nx)(ψx)(A) = ψx(A → ⊥) → ⊥. Then (Nx)(ψx) is an L -fuzzifying neighborhood system induces by L-

fuzzifying co-neighborhood system ψx on X. Furthermore (ψx)(Nx)(ψx)
= ψx and (Nx)(ψx)(Nx)

= Nx.

Proof. (A) (co− f1) (ψx)(Nx)(ϕ) = Nx(X) → ⊥ = ⊤ → ⊥ = ⊥.

(co− f2)(ψx)(Nx)(A ∪B) → ⊥ = Nx((A ∪B) → ⊥) → ⊥ = Nx((A→ ⊥) ∧ (B → ⊥)) → ⊥

= (Nx(A→ ⊥) → ⊥) ∨ (Nx(B → ⊥) → ⊥) = (ψx)(Nx)(A) ∨ (ψx)(Nx)(B).

(co− u3) Let x /∈ Ac. Then Nx(A
c) = ⊥ so that (ψx)(Nx)(A) = Nx(A→ ⊥) → ⊥ = ⊥ → ⊥ = ⊤.

(co− u4) (ψx)(Nx)(A) = Nx(A→ ⊥) → ⊥ ≥
∨
y/∈Bc(Ny(A→ ⊥) ∨Nx(Bc)) → ⊥

=
∧
y/∈Bc(Ny(A→ ⊥) → ⊥) ∧ (Nx(B

c) → ⊥)

=
∧
y∈B((ψy)(Ny)(A) ∧ ((ψx)(Nx)(B)).

(B) (f1) (Nx)(ψx)(X) = ψx(ϕ) → ⊥ = ⊥ → ⊥ = ⊤.

(f2) (Nx)(ψx)(A ∩B) = ψx((A ∩B) → ⊥) → ⊥ = (ψx((A→ ⊥) ∪ (B → ⊥))) → ⊥

= (ψx(A→ ⊥) ∨ (ψx(B → ⊥)) → ⊥

= (ψx(A→ ⊥) → ⊥) ∧ (ψx(B → ⊥) → ⊥) = (Nx)(ψx)(A) ∧ (Nx)(ψx)(B).

(u3) Let x /∈ A. Then (Nx)ψx(A) = ψx(A→ ⊥) → ⊥ = ⊤ → ⊥ = ⊥.

(u4) (Nx)(ψx)(A) = ψx(A→ ⊥) → ⊥ ≤ (
∧
y∈Bc ψy(A→ ⊥) ∧ ψx(X −B)) → ⊥

=
∨
y∈Bc(ψy(A→ ⊥) → ⊥) ∨ (ψx(X −B) → ⊥)

= (
∨
y/∈B(Ny)(ψy)(A)) ∨ (Nx)(ψx)(B).
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(C) (ψx)(Nx)(ψx)
(A) = (Nx)(ψx)

(A→ ⊥) → ⊥ = (ψx(A) → ⊥) → ⊥ = ψx(A) and

(Nx)(ψx)(Nx)
(A) = (ψx)(Nx)(A→ ⊥) → ⊥ = (Nx(A) → ⊥) → ⊥ = Nx(A).

Definition 4.3. Let X be a nonempty set. A map ( )◦ : P ([X]m) → LX is called an L -fuzzifying interior

operator if ( )◦ satisfies the following conditions:

(10) (X)◦ = 1X ,

(20) (A ∩B)◦ = (A)◦ ∧ (B)◦,

(30) (A)◦ ≤ A ,

(40) (A)◦(x) ≤
∨
y/∈B

((A)◦(y) ∨ (B)◦(x)).

Theorem 4.5. Let Nx be an L -fuzzifying neighborhood system. Define

( )◦ : P ([X]m) → LX as: (A)◦N (x) = Nx(A). Then ( )◦N is an L-fuzzifying interior operator induces by

L -fuzzifying neighborhood system Nx on X. Let ( )◦ be an L-fuzzifying interior operator. Define

Nx : P ([X]m) → L as: (Nx)( )◦(A) = (A)◦(x). Then (Nx)( )◦ is an L-fuzzifying neighborhood system induces

by L-fuzzifying interior operator ( )◦ on X. Moreover (Nx)( )◦Nx
= Nx and ( )◦(Nx)( )◦

= ( )◦.

Proof.

(A) (1◦) (X)◦Nx(x) = Nx(X) = ⊤, ∀x ∈ X. So, (X)◦Nx = 1X .

(2◦) (A ∩B)◦φx = Nx(A ∩B) = Nx(A) ∧Nx(A) =(A)◦Nx ∧ (B)◦Nx ,

(3◦) (A)◦Nx(x) = Nx(A) ≤ A(x),

(4◦) (A)◦Nx(x) = Nx(A) ≤
∨
y/∈B(Ny(A) ∨Nx(B)) =

∨
y/∈B((A)

◦
Nx

(y) ∨ (B)◦Nx(x)).

(B) (f1) (Nx)( )◦(X) = (X)◦(x) = 1X(x) = ⊤, ∀x ∈ X.

(f2) (Nx)( )◦(A ∩B) = (A ∩B)◦(x) =(A)◦(x) ∧ (B)◦(x) = (Nx)( )◦(A) ∧ (Nx)( )◦(B),

(u3) Let x /∈ A. Then, (Nx)( )◦(A) = (A)◦(x) ≤ A(x) = ⊥. So, (φx)( )◦(A) = ⊥.

(u4) (Nx)( )◦(A) = (A)◦(x) ≤
∨
y/∈B((A)

◦(y) ∨ (B)◦(x)) =
∨
y/∈B((Ny)( )◦(A) ∨ (Nx)( )◦(B)).

(C) (Nx)( )◦
(Nx)

(A) = (A)◦(Nx)(x) = Nx(A) and ( )◦(Nx)( )◦
(A)(x) = (Nx)( )◦(A) = (A)◦(x).

Definition 4.4. Let X be a nonempty set. A map ( )− : P ([X]m) → LX is called an L-fuzzifying closure

operator if ( )− satisfies the following conditions:

(1−) (ϕ)− = 1ϕ,

(2−) (A ∪B)− = (A)− ∨ (B)−,
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(3−) A ≤ (A)− ,

(4−) (A)−(x) ≤
∧
y/∈B((A)

−(y) ∧ (B)−(x)).

Theorem 4.6. Let ψx be an L -fuzzifying co-neighborhood system. Define

( )− : P ([X]m) → LX as: (A)−ψ (x) = ψx(A). Then ( )−ψ is an L-fuzzifying closure operator induces by

L -fuzzifying co-neighborhood system ψx on X. Let ( )− be an L-fuzzifying closure operator. Define

ψx : P ([X]m) → L as: (ψx)( )−(A) = A−(x). Then (ψx)( )◦ is an L-fuzzifying co-neighborhood system induces

by L-fuzzifying closure operator ( )− on X. Moreover (ψx)( )−
(ψx)

= ψx and ( )−ψx
( )−

= ( )−.

Proof. (A) (1)− (ϕ)−ψ (x) = ψx(ϕ) = ⊥, ∀x ∈ X. So, (ϕ)−ψ (x) = 1ϕ,

(2−) (A ∪B)−ψ (x) = ψx(A ∪B) = ψx(A) ∨ ψx(B) = (A)−ψ (x) ∨ (B)−ψ (x),

(3−) (A)−ψ (x) = ψx(A) ≥ A(x),

(4−) (A)−ψ (x) = ψx(A) ≥
∧
y/∈B(ψy(A) ∧ ψx(B)) =

∧
y/∈B((A)

−
ψ (y) ∧ (B)−ψ (x)).

(B) (co− f1) (ψx)( )−(ϕ) = ϕ−(x) = 1ϕ, ∀x ∈ X. So,(ψx)( )−(ϕ) = ⊥.

(co− f2) (ψx)( )−(A ∪B) = (A ∪B)−(x) = (A)−(x) ∨ (B)−(x) = (ψx)( )−(A) ∨ (ψx)( )−(B),

(co− u3) Let x ∈ A. Then (ψx)( )−(A) = (A)−(x) = ⊤. So,(ψx)( )−(A) = ⊤,

(co− u4) (ψx)( )−(A) = (A)−(x) ≤
∧
y/∈B((A)

−(y) ∧ (B)−(x)) =
∧
y/∈B(((A) ∨ (ψx)

( )
ψy)

( )−−(B)).

(C) (ψx)( )−
(ψx)

(A) = (A)−ψ (x) = ψx(A) and ( )−ψx
( )−

(A) = (ψx)( )−(A) = (A)−(x).

Remark 4.1. From (Corollary 2.15 [Höhle (1999)] (see Theorem 1.1 )) and Theorems 3.2.1, 3.2.2, 4.1, 4.2,4.3,

4.4, 4.5, 4.6 one can have the following Theorem:

Theorem 4.7. If L is a completely distributive complete MV -algebra then the concepts of stratified and

transitive L-topologies, stratified and transitive co-L-topologies, stratified and transitive L -interior opera-

tors, stratified and transitive L-closure operators, L -fuzzy contiguity relations, L -fuzzifying neighborhood

systems, L-fuzzy co-contiguity relations, multi fuzzifying topologies, L-fuzzifying co-topologies, L-fuzzifying

co-neighborhood systems, L-fuzzifying interior operators, L -fuzzifying closure operators are equivalent no-

tions.
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