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Abstract: In this paper, we propose several trigonometric generalizations of the Hilbert integral inequality. They are

characterized by the inclusion of four adjustable parameters and mainly cosine and sine (or sinc) functions, which remain

an under-explored area in the current literature.
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1. Introduction

Integral inequalities are one of the most basic tools of mathematical analysis. Essentially, they provide bounds

for integrals of functions under various conditions. In particular, they facilitate the derivation of integral

approximations and the establishment of convergence criteria. This makes them crucial in both theoretical and

applied mathematics. See [1] and [10]. Among the famous integral inequalities, the classical Hilbert integral

inequality (HII) stands out as one of the most important. It is particularly well known for its ability to bound

integrals involving products of functions. The (classical) HII can be expressed formally as follows: For any

square-integrable functions p : [0,+∞) → [0,+∞) and q : [0,+∞) → [0,+∞), we have∫ +∞

0

∫ +∞

0

p(x)q(y)

x+ y
dxdy < π||p||2||q||2, (1)

where, for any square-integrable function r : [0,+∞) → [0,+∞), the corresponding L2 norm is defined by

||r||2 =

{∫ +∞

0

[r(z)]2dz

}1/2

.

Since its discovery, the HII has inspired a great deal of research. See, for example, [6], [9], [8], [7], [12], [13], and

[2]. It has also been generalized in various ways. A comprehensive state of the art can be found in [3] and [14],

together with the references therein.

Surprisingly, if we focus on upper bounds of the exact form ”constant multiplied by ||p||2||q||2 ”, trigono-
metric types of the HII are relatively rare. The most famous of them are defined using the arctangent function,

mainly because of its integrability property and its singular formula arctan(z) + arctan(1/z) = π/2 for z > 0.

For example, the following is proved in [12]:∫ +∞

0

∫ +∞

0

arctan(x/y)

max(x, y)
p(x)q(y)dxdy < π||p||2||q||2.
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We may also mention the one in [13], which can be formulated as follows:∫ +∞

0

∫ +∞

0

arctan
[
(x/y)1/2

]
x+ y

p(x)q(y)dxdy <
π2

4
||p||2||q||2.

Another notable one-parameter trigonometric type of HII is proposed in [14, Example 2.1.9]. It is formulated

as follows: ∫ +∞

0

∫ +∞

0

{
arctan[(x/y)1/2]

}α

x+ y
p(x)q(y)dxdy <

π

α+ 1

(π
2

)α

||p||2||q||2,

for any α > −1. With α = 1, we get the above inequality, and with α = 0, we get the classical HII.

A more recent inequality of this type is also given in [4]. It can be written as∫ +∞

0

∫ +∞

0

arctan(x/y)

x+ y
p(x)q(y)dxdy ≤ π2

4
||p||2||q||2.

To the best of our knowledge, variants of the HII based on other trigonometric functions with upper bounds of

the exact form ”constant multiplied by ||p||2||q||2 ” are almost non-existent in the literature. With this in mind,

in this paper, we innovate by investigating two new generalizations of the HII centered on the cosine and sine

functions. In the first main result, we determine a sharp and tractable constant C > 0 such that∫ +∞

0

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy ≤ C||p||2||q||2,

where α , β , γ and θ are four adjustable parameters. So α activates the main trigonometric term, i.e.,

cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
, β and θ can be thought of as angle parameters, and γ modulates the variable

x in the denominator term. We want to have as few constraints as possible on these parameters. The constant

C is logically dependent on these parameters. In our second main result, under a similar parameter setting, we

determine a sharp and manageable constant D > 0 such that∫ +∞

0

∫ +∞

0

1− (α/β)(y/x)1/2 sin
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy ≤ D||p||2||q||2,

which can be reformulated as∫ +∞

0

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy ≤ D||p||2||q||2,

where we have considered the sinc function defined by

sinc(z) =


sin(z)

z
if z ̸= 0

1 if z = 0

. (2)

See [11]. Again, the parameter α activates the main trigonometric term, here sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
,

β and θ can be thought of as angle parameters, and γ modulates the variable x in the denominator term. The

constant D logically depends on the parameters involved. For both results, the classical HII is recovered by

46



Christophe Chesneau

taking α = 0 and γ = 1, which explains the trigonometric nature of the generalizations. Based on these results,

several special cases for certain values of the parameters are discussed. To the best of our knowledge, they are

new in the literature and offer a trigonometric perspective for more types of integral inequalities related to the

HII.

The rest of the paper consists of Section 2, which focuses on the first main result along with some special

cases, and Section 3, which details the second main result. A conclusion is given in Section 4.

2. Cosine type HII

The proposal for a four-parameter cosine type of HII is given below.

Theorem 2.1. Let α ∈ [−1, 1] , β ≥ 0 , γ > 0 and θ ≥ 0 . For any square-integrable functions p : [0,+∞) →
[0,+∞) and q : [0,+∞) → [0,+∞) , we have

∫ +∞

0

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy ≤ Cα,β,γ,θ||p||2||q||2, (3)

where

Cα,β,γ,θ =
π

γ1/2

{
1− α

2

[
e−|β−θ|/γ1/2

+ e−(β+θ)/γ1/2
]}

. (4)

Proof. First of all, let us note that cos(z) ∈ [−1, 1] for any z ∈ R . Therefore, for any x > 0 and y > 0, since

α ∈ [−1, 1], we have

1− α cos

[
β

(
x

y

)1/2
]
cos

[
θ

(
x

y

)1/2
]
≥ 1− |α|

∣∣∣∣∣cos
[
β

(
x

y

)1/2
]∣∣∣∣∣

∣∣∣∣∣cos
[
θ

(
x

y

)1/2
]∣∣∣∣∣

≥ 1− |α| ≥ 0.

As a result, since γ > 0, we have

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

≥ 0,

which allows it to be raised to any positive exponent. It follows from this, the Cauchy-Schwarz inequality (or
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Hölder inequality of exponent 2) with respect to the variables x and y , and the Fubini-Tonelli theorem that

∫ +∞

0

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

=

∫ +∞

0

∫ +∞

0


[
1− α cos

[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

]1/2 (
x

y

)1/4

p(x)


×


[
1− α cos

[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

]1/2 (y
x

)1/4

q(y)

 dxdy

≤

{∫ +∞

0

[∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

(
x

y

)1/2

dy

]
[p(x)]2dx

}1/2

×

{∫ +∞

0

[∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

(y
x

)1/2

dx

]
[q(y)]2dy

}1/2

=

{∫ +∞

0

S(x)[p(x)]2dx

}1/2 {∫ +∞

0

T (y)[q(y)]2dy

}1/2

, (5)

where

S(x) =

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

(
x

y

)1/2

dy

and

T (y) =

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

(y
x

)1/2

dx.

Let us now examine the expressions of S(x) and T (y). To do this, the known lemma below is crucial.

Lemma 2.1. For any a ≥ 0 , b ≥ 0 and c > 0 , we have

∫ +∞

0

cos(ax) cos(bx)

c+ x2
dx =

π

4c1/2

[
e−|a−b|c1/2 + e−(a+b)c1/2

]
.

We refer to [5, Formula number 3.742.3].

By considering the change of variables y = x/u2 , and Lemma 2.1 with appropriate choices for the
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parameters, we obtain

S(x) =

∫ 0

+∞

1− α cos(βu) cos(θu)

γx+ x/u2
(u2)1/2

(
−2x

u3

)
du

= 2

∫ +∞

0

1− α cos(βu) cos(θu)

1 + γu2
du

=
2

γ

[∫ +∞

0

1

1/γ + u2
du− α

∫ +∞

0

cos(βu) cos(θu)

1/γ + u2
du

]

=
2

γ

{
πγ1/2

2
− α

πγ1/2

4

[
e−|β−θ|/γ1/2

+ e−(β+θ)/γ1/2
]}

=
π

γ1/2

{
1− α

2

[
e−|β−θ|/γ1/2

+ e−(β+θ)/γ1/2
]}

= Cα,β,γ,θ.

Let us now concentrate on T (y). Considering the change of the variables x = yu2 and the second step of the

previous development, we get more directly

T (y) =

∫ +∞

0

1− α cos(βu) cos(θu)

γyu2 + y

(
1

u2

)1/2

(2yu)du

= 2

∫ +∞

0

1− α cos(βu) cos(θu)

1 + γu2
du

= Cα,β,γ,θ.

Hence, both S(x) and T (y) are equal to Cα,β,γ,θ . Owing to Equation (5), we get∫ +∞

0

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

≤
{∫ +∞

0

Cα,β,γ,θ[p(x)]
2dx

}1/2 {∫ +∞

0

Cα,β,γ,θ[q(y)]
2dy

}1/2

= Cα,β,γ,θ||p||2||q||2.

The result is proved. □

We can derive the following inequalities from Theorem 2.1:

� By choosing α = 0 (which immediately disables the parameters β and θ ) and γ = 1, we find that

C0,β,1,θ =
π

11/2
(1− 0) = π.

In this case, Equation (3) is reduced to the classical HII, i.e., with the expected constant π .

� By choosing θ = 0, we obtain∫ +∞

0

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
γx+ y

p(x)q(y)dxdy ≤ Cα,β,γ,0||p||2||q||2,
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where

Cα,β,γ,0 =
π

γ1/2

[
1− αe−β/γ1/2

]
. (6)

Two special cases of this formula are now highlighted. If we take β = 2ν with ν ≥ 0 and α = 1, and use

the formula [1− cos(2z)]/2 = [sin(z)]2 for any z ∈ R , we get

∫ +∞

0

∫ +∞

0

{
sin

[
ν(x/y)1/2

]}2

γx+ y
p(x)q(y)dxdy ≤ C†||p||2||q||2,

where

C† =
1

2
C1,2ν,γ,0 =

π

2γ1/2

[
1− e−2ν/γ1/2

]
.

Similarly, if we take β = 2ν with ν ≥ 0 and α = −1, and use the formula [1 + cos(2z)]/2 = [cos(z)]2 for

any z ∈ R , we get ∫ +∞

0

∫ +∞

0

{
cos

[
ν(x/y)1/2

]}2

γx+ y
p(x)q(y)dxdy ≤ C‡||p||2||q||2,

where

C‡ =
1

2
C−1,2ν,γ,0 =

π

2γ1/2

[
1 + e−2ν/γ1/2

]
.

� By choosing β = θ , we obtain∫ +∞

0

∫ +∞

0

1− α
{
cos

[
β(x/y)1/2

]}2

γx+ y
p(x)q(y)dxdy ≤ Cα,β,γ,β ||p||2||q||2,

where

Cα,β,γ,β =
π

γ1/2

{
1− α

2

[
1 + e−2β/γ1/2

]}
.

By using the classical trigonometric formula [cos(z)]2+[sin(z)]2 = 1 for any z ∈ R , we get
{
cos

[
β(x/y)1/2

]}2
=

1−
{
sin

[
β(x/y)1/2

]}2
, and we also establish that

∫ +∞

0

∫ +∞

0

1− α+ α
{
sin

[
β(x/y)1/2

]}2

γx+ y
p(x)q(y)dxdy ≤ Cα,β,γ,β ||p||2||q||2.

In addition, from Theorem 2.1, the following type of inverse trigonometric HII can be derived:∫ +∞

0

∫ +∞

0

p(x)q(y)

γx+ y
dxdy − Cα,β,γ,θ||p||2||q||2

≤ α

∫ +∞

0

∫ +∞

0

cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy.
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The facts that α can be negative or positive, and that cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
is relatively complex to

handle with changing signs in functions of β , θ , x and y , make this inequality somewhat sophisticated and of

potential interest. To the best of our knowledge, all the trigonometric (cosine) types of HII presented here are

new to the literature. Of course, other examples can be derived by choosing different values for the parameters

involved.

Another trigonometric integral result related to Theorem 2.1 is presented below.

Theorem 2.2. Let α ∈ [−1, 1] , β ≥ 0 , γ > 0 and θ ≥ 0 . For any square-integrable function p : [0,+∞) →
[0,+∞) , we have

∫ +∞

0

[∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]2

dy ≤ C2
α,β,γ,θ||p||22,

where Cα,β,γ,θ is described in Equation (4). In addition, the above inequality implies Equation (3).

Proof. We introduce the intermediary integral function r : [0,+∞) → [0,+∞) defined by

r(y) =

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx.

By applying Theorem 2.1 with the functions p(x) and q(y) = r(y), we get

||r||22 =

∫ +∞

0

[∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]
r(y)dy

=

∫ +∞

0

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)r(y)dxdy

≤ Cα,β,γ,θ||p||2||r||2.

By simplifying with ||r||2 on the both sides and raising to the square exponent, we get

||r||22 ≤ C2
α,β,γ,θ||p||22,

which is equivalent to

∫ +∞

0

[∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]2

dy ≤ C2
α,β,γ,θ||p||22.

This establishes the desired inequality.

For the reciprocal case, let us suppose that

∫ +∞

0

[∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]2

dy ≤ C2
α,β,γ,θ||p||22

and consider an arbitrary square-integrable function q : [0,+∞) → [0,+∞). It follows from the Cauchy-Schwarz
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inequality with respect to the variable y and the above assumption that∫ +∞

0

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

=

∫ +∞

0

[∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]
q(y)dy

≤


∫ +∞

0

[∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]2

dy


1/2

||q||2

≤
{
C2

α,β,γ,θ||p||22
}1/2 ||q||2 = Cα,β,γ,θ||p||2||q||2.

Equation (3) is established, which completes the proof. □

Theorem 2.2 thus provides an alternative formulation of Theorem 2.1, and a different way of looking at

the effects of the parameters involved and p(x).

To conclude this section, we mention that Theorems 2.1 and 2.2 are also valid if we replace the main

integrated term, i.e.,

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

,

by

1− α cos
[
β(xy)1/2

]
cos

[
θ(xy)1/2

]
1 + γxy

.

The proofs are similar, except that the change of the variable u2 = xy must be considered for the analogues of

S(x) and T (y) in Theorem 2.1, from which Theorem 2.2 can be derived. These results may still be of interest,

although they do not correspond to generalizations of the HII.

3. Sine type HII

This section follows the same structure of developments as the previous section, with another kind of trigono-

metric type HII. More specifically, the proposal for a four-parameter sine type HII is given below.

Theorem 3.1. Let α ∈ [−1, 1] , β ≥ 0 , γ > 0 and θ ≥ 0 . For any square-integrable functions p : [0,+∞) →
[0,+∞) and q : [0,+∞) → [0,+∞) , we have∫ +∞

0

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy ≤ Dα,β,γ,θ||p||2||q||2, (7)

where the definition of the sine cardinal function is recalled in Equation (2) and

Dα,β,γ,θ =


π

[
1

γ1/2
− α

β

{
1− e−β/γ1/2

cosh

[
θ

γ1/2

]}]
if β ≥ θ

π

{
1

γ1/2
− α

β
e−θ/γ1/2

sinh

[
β

γ1/2

]}
if θ ≥ β

, (8)

with cosh(z) = (ez + e−z)/2 and sinh(z) = (ez − e−z)/2 for any z ∈ R .

52



Christophe Chesneau

Proof. It is well known that cos(z) ∈ [−1, 1] and sinc(z) ∈ [−1, 1] for any z ∈ R . Therefore, for any x > 0

and y > 0, since α ∈ [−1, 1], we get

1− α sinc

[
β

(
x

y

)1/2
]
cos

[
θ

(
x

y

)1/2
]
≥ 1− |α|

∣∣∣∣∣sinc
[
β

(
x

y

)1/2
]∣∣∣∣∣

∣∣∣∣∣cos
[
θ

(
x

y

)1/2
]∣∣∣∣∣

≥ 1− |α| ≥ 0.

As a result, since γ > 0, we have

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

≥ 0.

We can therefore set the main integrated term to any positive exponent. It follows from this, the Cauchy-Schwarz

inequality with respect to the variables x and y , and the Fubini-Tonelli theorem that

∫ +∞

0

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

=

∫ +∞

0

∫ +∞

0


[
1− α sinc

[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

]1/2 (
x

y

)1/4

p(x)


×


[
1− α sinc

[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

]1/2 (y
x

)1/4

q(y)

 dxdy

≤
{∫ +∞

0

U(x)[p(x)]2dx

}1/2 {∫ +∞

0

V (y)[q(y)]2dy

}1/2

, (9)

where

U(x) =

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

(
x

y

)1/2

dy

and

V (y) =

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

(y
x

)1/2

dx.

Now let us determine U(x) and V (y). The lemma below is central to this.

Lemma 3.1. For any a ≥ 0 , b ≥ 0 and c > 0 , we have

∫ +∞

0

sin(ax) cos(bx)

x(c+ x2)
dx =


π

2c

{
1− e−ac1/2 cosh[bc1/2]

}
if a ≥ b

π

2c
e−bc1/2 sinh[ac1/2] if b ≥ a

.

We refer to [5, Formula number 3.725.3].
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By considering the change of variables y = x/u2 , we obtain

U(x) =

∫ 0

+∞

1− α sinc(βu) cos(θu)

γx+ x/u2
(u2)1/2

(
−2x

u3

)
du

= 2

∫ +∞

0

1− α sinc(βu) cos(θu)

1 + γu2
du

=
2

γ

[∫ +∞

0

1

1/γ + u2
du− α

∫ +∞

0

sinc(βu) cos(θu)

1/γ + u2
du

]

=
2

γ

{
πγ1/2

2
− α

β
Wβ,γ,θ

}
,

where

Wβ,γ,θ =

∫ +∞

0

sin(βu) cos(θu)

u(1/γ + u2)
du.

This integral can be determined by using Lemma 3.1 with appropriate choices for the parameters. We get

Wβ,γ,θ =


πγ

2

{
1− e−β/γ1/2

cosh

[
θ

γ1/2

]}
if β ≥ θ

πγ

2
e−θ/γ1/2

sinh

[
β

γ1/2

]
if θ ≥ β

.

We thus obtain

U(x) =


π

[
1

γ1/2
− α

β

{
1− e−β/γ1/2

cosh

[
θ

γ1/2

]}]
if β ≥ θ

π

{
1

γ1/2
− α

β
e−θ/γ1/2

sinh

[
β

γ1/2

]}
if θ ≥ β

= Dα,β,γ,θ.

Let us now consider V (y). Taking into account the change of variables x = yu2 and the previous

development, we get directly

V (y) =

∫ +∞

0

1− α sinc(βu) cos(θu)

γyu2 + y

(
1

u2

)1/2

(2yu)du

= 2

∫ +∞

0

1− α sinc(βu) cos(θu)

1 + γu2
du

= Dα,β,γ,θ.

So both U(x) and V (y) are equal to Dα,β,γ,θ . Because of Equation (9), we get∫ +∞

0

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

≤
{∫ +∞

0

Dα,β,γ,θ[p(x)]
2dx

}1/2 {∫ +∞

0

Dα,β,γ,θ[q(y)]
2dy

}1/2

= Dα,β,γ,θ||p||2||q||2.
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The desired result is obtained. □

We can deduce the following inequalities from Theorem 3.1:

� By choosing α = 0 (which immediately disables the parameters β and θ ) and γ = 1, we find that

D0,β,1,θ = π

[
1

11/2
− 0

]
= π.

In this case, Equation (7) is reduced to the classical HII.

� By choosing θ = 0 and β > 0, we obtain∫ +∞

0

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
γx+ y

p(x)q(y)dxdy ≤ Dα,β,γ,0||p||2||q||2,

where

Dα,β,γ,0 = π

[
1

γ1/2
− α

β

{
1− e−β/γ1/2

}]
.

This inequality can be also expressed as∫ +∞

0

∫ +∞

0

1− (α/β)(y/x)1/2 sin
[
β(x/y)1/2

]
γx+ y

p(x)q(y)dxdy ≤ Dα,β,γ,0||p||2||q||2.

� By choosing β = 0, we obtain∫ +∞

0

∫ +∞

0

1− α cos
[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy ≤ Dα,0,γ,θ||p||2||q||2,

where

Dα,0,γ,θ = lim
β→0

Dα,β,γ,θ = lim
β→0

π

{
1

γ1/2
− α

β
e−θ/γ1/2

sinh

[
β

γ1/2

]}
= π

[
1

γ1/2
− α

γ1/2
e−θ/γ1/2

]
=

π

γ1/2

[
1− αe−θ/γ1/2

]
.

As expected, we get a result similar to that of Equation (6) (except that we have reversed the roles of β

and θ ).

In addition, from Theorem 3.1, the following type of inverse trigonometric HII can be derived:∫ +∞

0

∫ +∞

0

p(x)q(y)

γx+ y
dxdy −Dα,β,γ,θ||p||2||q||2

≤ α

∫ +∞

0

∫ +∞

0

sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy.

To the best of our knowledge, all the trigonometric (sinc) types of HII presented here are new to the literature.

Other examples can be derived by choosing different values for the parameters involved.

Another trigonometric integral result that is related to Theorem 3.1 is presented below.
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Theorem 3.2. Let α ∈ [−1, 1] , β ≥ 0 , γ > 0 and θ ≥ 0 . For any square-integrable function p : [0,+∞) →
[0,+∞) , we have

∫ +∞

0

[∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]2

dy ≤ D2
α,β,γ,θ||p||22,

where Dα,β,γ,θ is described in Equation (8). In addition, the above inequality implies Equation (7).

Proof. We introduce the following intermediary integral function s : [0,+∞) → [0,+∞):

s(y) =

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx.

It follows from Theorem 3.1 with the functions p(x) and q(y) = s(y) that

||s||22 =

∫ +∞

0

[∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]
s(y)dy

=

∫ +∞

0

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)s(y)dxdy

≤ Dα,β,γ,θ||p||2||s||2.

By simplification with ||s||2 on both sides and raising to the square exponent, we have

||s||22 ≤ D2
α,β,γ,θ||p||22,

which reads as ∫ +∞

0

[∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]2

dy ≤ D2
α,β,γ,θ||p||22.

The stated inequality is demonstrated.

For the equivalence, let us assume that

∫ +∞

0

[∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]2

dy ≤ D2
α,β,γ,θ||p||22.

Let us consider a square-integrable function q : [0,+∞) → [0,+∞). It follows from the Cauchy-Schwarz

inequality with respect to the variable y and the above assumption that∫ +∞

0

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

≤


∫ +∞

0

[∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)dx

]2

dy


1/2

||q||2

≤
{
D2

α,β,γ,θ||p||22
}1/2 ||q||2 = Dα,β,γ,θ||p||2||q||2.
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This completes the proof by establishing Equation (7). □

Theorem 3.2 thus provides an alternative way of expressing Theorem 3.1. It also allows a deeper

understanding of the implications of the parameters α , β , γ and θ .

We mention that Theorems 3.1 and 3.2 are also valid if we replace the main integrated term, i.e.,

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

,

by

1− α sinc
[
β(xy)1/2

]
cos

[
θ(xy)1/2

]
1 + γxy

.

The proofs are similar, except that the change of the variable u2 = xy must be considered for the analogues of

U(x) and V (y) in Theorem 3.1. Theorem 3.2 can then be derived. These results are not generalizations of the

HII, but may be of independent interest.

To conclude this section, we present a proposition that is a consequence of Theorems 2.1 and 3.1.

Proposition 3.1. Let α ∈ [−1, 1] , β ≥ 0 , γ > 0 , ρ ≥ 0 , θ ≥ 0 and ω ∈ [0, 1] . For any square-integrable

functions p : [0,+∞) → [0,+∞) and q : [0,+∞) → [0,+∞) , the three inequalities below hold.

1. We have ∫ +∞

0

∫ +∞

0

1− α
{
ω cos

[
β(x/y)1/2

]
+ (1− ω) sinc

[
ρ(x/y)1/2

]}
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

≤ Eα,β,γ,ρ,θ,ω||p||2||q||2,

where
Eα,β,γ,ρ,θ,ω = ωCα,β,γ,θ + (1− ω)Dα,ρ,γ,θ,

Cα,β,γ,θ is given in Equation (4) and Dα,ρ,γ,θ is given in Equation (8).

2. We have ∫ +∞

0

∫ +∞

0

1− α
{
ω cos

[
β(x/y)1/2

]
+ (1− ω) cos

[
ρ(x/y)1/2

]}
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

≤ Fα,β,γ,ρ,θ,ω||p||2||q||2,

where
Fα,β,γ,ρ,θ,ω = ωCα,β,γ,θ + (1− ω)Cα,ρ,γ,θ.

3. We have∫ +∞

0

∫ +∞

0

1− α
{
ω sinc

[
β(x/y)1/2

]
+ (1− ω) sinc

[
ρ(x/y)1/2

]}
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

≤ Gα,β,γ,ρ,θ,ω||p||2||q||2,

where
Gα,β,γ,ρ,θ,ω = ωDα,β,γ,θ + (1− ω)Dα,ρ,γ,θ.
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Proof.

1. An analysis of the factorization reveals a linear convex combination with two components. Using this and

the inequalities in Theorems 2.1 and 3.1, we obtain∫ +∞

0

∫ +∞

0

1− α
{
ω cos

[
β(x/y)1/2

]
+ (1− ω) sinc

[
ρ(x/y)1/2

]}
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

= ω

∫ +∞

0

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

+ (1− ω)

∫ +∞

0

∫ +∞

0

1− α sinc
[
ρ(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

≤ ωCα,β,γ,θ + (1− ω)Dα,ρ,γ,θ = Eα,β,γ,ρ,θ,ω.

2. Similarly, but with the use of only Theorem 2.1, we have∫ +∞

0

∫ +∞

0

1− α
{
ω cos

[
β(x/y)1/2

]
+ (1− ω) cos

[
ρ(x/y)1/2

]}
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

= ω

∫ +∞

0

∫ +∞

0

1− α cos
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

+ (1− ω)

∫ +∞

0

∫ +∞

0

1− α cos
[
ρ(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

≤ ωCα,β,γ,θ + (1− ω)Cα,ρ,γ,θ = Fα,β,γ,ρ,θ,ω.

3. Similarly, but with the use of only Theorem 3.1, we have∫ +∞

0

∫ +∞

0

1− α
{
ω sinc

[
β(x/y)1/2

]
+ (1− ω) sinc

[
ρ(x/y)1/2

]}
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

= ω

∫ +∞

0

∫ +∞

0

1− α sinc
[
β(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

+ (1− ω)

∫ +∞

0

∫ +∞

0

1− α sinc
[
ρ(x/y)1/2

]
cos

[
θ(x/y)1/2

]
γx+ y

p(x)q(y)dxdy

≤ ωDα,β,γ,θ + (1− ω)Dα,ρ,γ,θ = Gα,β,γ,ρ,θ,ω.

The stated inequalities are established. □

This result is just one example of how we can combine Theorems 2.1 and 3.1 to create new integral

inequalities. Other possibilities can be considered, including linear convex combinations with three or more

components.

4. Conclusion

The HII has been studied extensively in the literature, with several variants and generalizations. However, few

of them have considered trigonometric variants while keeping the same form of the upper bound, i.e., ”constant

multiplied by the product of the L2 norm of the two main functions (without weight)”, especially using the

58



Christophe Chesneau

cosine and sine functions. This lack of results has motivated this paper. We have determined two valuable

trigonometric generalizations of the HII with four adjustable parameters, and cosine and sine functions. The

main constants involved in these inequalities have manageable expressions, making them attractive for use

beyond the purposes of the study. Other integral inequalities are also derived. We believe that more can be

done in this direction, giving the first step towards possible extensions and variants of the HII to a higher

dimension or other trigonometric variant schemes.
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