

On micro forms of Δ -open sets, Δ -continuous maps and generalized micro Δ -continuous in micro topological spaces

Selvaraj Ganesan¹* ¹PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). ORCID iD: 0000-0002-7728-8941

Received: 22 Jun 2024	٠	Accepted: 16 Sep 2024	٠	Published Online: 20 Sep 2024
-----------------------	---	------------------------------	---	-------------------------------

Abstract: This article introduces and studied $m\Delta$ -open sets in micro topological spaces. We offer a new class of sets called $gm\Delta$ -closed sets in micro topological spaces and we study some of its basic properties. The idea of introducing new classes of open sets are called micro semi Δ -open, micro α - Δ -open, micro pre Δ -open, micro b- Δ -open micro β - Δ -open, micro regular Δ -open sets, micro semi Δ -continuous, micro α - Δ -continuous, micro pre Δ -continuous, micro b- Δ -continuous, micro β - Δ -continuous micro β - Δ -continuous and micro regular Δ -continuous in micro topological spaces. We introduce $m\Delta$ -continuous maps, $gm\Delta$ -continuous maps, $m\Delta$ -irresolute maps, $gm\Delta$ -irresolute maps, contra $m\Delta$ -continuous maps and contra $gm\Delta$ -continuous maps in micro topological spaces and discuss some of their properties.

Key words: Δ -closed, $m\Delta$ -closed, $gm\Delta$ -closed, $gm\Delta$ -continuous maps, $gm\Delta$ -irresolute maps and contra $gm\Delta$ continuous maps

1. Introduction

Several notions of open-like and closed-like sets in micro topological spaces were introduced and studied. The beginning was with S. Chandrasekar who initiated the notion of micro forms of open sets, [1, 2]. After that micro β -open sets and micro b-open sets in micro topological spaces were introduced H. Z. Ibrahim, [7, 8]. Furthermore, the notions of micro regular open sets and micro π -open sets were initiated, [3]. We introduced and studied the notion of micro Δ -open sets in micro topological spaces,[5]. The concept of micro continuity in micro topological spaces was extended to generalized micro Δ -continuity, [6].

A set in a topological space is called Δ -open if it is the symmetric difference of two open sets. The notion of Δ -open sets appeared in [10] and in [4]. However, it was pointed out in [10] and in [4] that the notion of Δ -open sets is due to a preprint by M. Veera Kumar. The complement of a Δ -open set is Δ -closed.

A set in a micro topological space is called $m\Delta$ -open if it is the symmetric difference of two micro open sets were initiated, [5].

Preliminary concepts required in our work are briefly recalled in section 2. In section 3, the idea of introducing new classes of open sets are called micro semi Δ -open, micro α - Δ -open, micro pre Δ -open, micro b- Δ -open, micro β - Δ -open, micro β - Δ -continuous, micro β - Δ -continuous, micro β - Δ -continuous, micro b- Δ -continuous micro β - Δ -continuous and micro regular Δ -continuous in micro topological spaces and also the concept of $gm\Delta$ -continuous maps and $gm\Delta$ -irresolute maps. We introduce contra $gm\Delta$ -continuous map in micro topological spaces and discuss some of their properties.

[©]Asia Mathematika, DOI: 10.5281/zenodo.13948738

^{*}Correspondence: sgsgsgsgsg77@gmail.com

2. Preliminaries

Definition 2.1. [9] Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as the indiscernibility relation. Elements in the same equivalence class are indiscernible. The pair (U, R) is said to be the approximation space. Let $X \subseteq U$.

- 1. The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and it is denoted by $L_R(X)$. That is, $L_R(X) = \bigcup x_e U\{R(X) : R(X) \subseteq X\}$ where R(x) denotes the equivalence class determined by X.
- 2. The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by $U_R(X)$. That is, $U_R(X) = \bigcup x_{\epsilon} U\{R(X) : R(X) \cap X \neq \phi\}$
- 3. The boundary region of X with respect to R is the set of all objects, which can be neither in nor as not-X with respect to R and it is denoted by $B_R(X)$. That is, $B_R(X) = U_R(X) L_R(X)$

Definition 2.2. [9] If $(U, \tau_R(X))$ is the nano topological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, then

- 1. The nano interior of the set A is defined as the union of all nano open subsets contained in A and it is denoted by nint(A). That is, nint(A) is the largest nano open subset of A.
- 2. The nano closure of the set A is defined as the intersection of all nano closed sets containing A and it is denoted by ncl(A). That is, ncl(A) is the smallest nano closed set containing A.

Definition 2.3. [1] Let $(U, \tau_R(X))$ be a nano topological space. Then, $\mu_R(X) = \{N \cup (\hat{N} \cap \mu) : N, \hat{N} \in \tau_R(X) \}$ and $\mu \notin \tau_R(X)\}$ is called the Micro topology on U with respect to X. The triplet $(U, \tau_R(X), \mu_R(X))$ is called Micro topological space and the elements of $\mu_R(X)$ are called Micro open sets and the complement of a Micro open set is called a Micro closed set.

Definition 2.4. [1] The Micro interior of a set A is denoted by Micro-int(A) (briefly, m-int(A)) and is defined as the union of all Micro open sets contained in A. i.e., Mic-int(A) = $\cup \{G : G \text{ is Micro open and } G \subseteq A \}$.

Definition 2.5. [1] The Micro closure of a set A is denoted by Micro-cl(A) (briefly, m-cl(A)) and is defined as the intersection of all Micro closed sets containing A. i.e., $Mic-cl(A) = \cap \{F : F \text{ is Micro closed and } A \subseteq F\}$.

Definition 2.6. [4, 10, 11] A subset A of a space (X, τ) is called Δ -open if $A = (B - C) \cup (C - B)$, where B and C are open subsets of X. Δ -closed sets are the complement of Δ -open sets.

Definition 2.7. [5] A subset S of a space (U, $\tau_R(X)$, $\mu_R(X)$) is said to be micro Δ -open set (in short, $m\Delta$ -open) if S = (A - B) \cup (B - A), where A and B are micro-open subsets in U. The complement of micro- Δ -open sets is called micro - Δ -closed sets.

Definition 2.8. [5] The micro interior of a set A is denoted by micro Δ -int(A) (briefly, $m\Delta$ -int(A)) and is defined as the union of all $m\Delta$ open sets contained in A. i.e., $m\Delta$ -int(A) = $\cup \{G : G \text{ is } m\Delta$ -open and $G \subseteq A \}$.

Definition 2.9. [5] The micro closure of a set A is denoted by micro Δ -cl(A) (briefly, $m\Delta$ -cl(A)) and is defined as the intersection of all $m\Delta$ -closed sets containing A. i.e., $m\Delta$ -cl(A) = \cap {F : F is $m\Delta$ -closed and A \subseteq F}.

Definition 2.10. [6] A subset A of a space (U, $\tau_R(X)$, $\mu_R(X)$) is called a generalized micro Δ -closed (briefly, gm- Δ -closed) set if $m\Delta cl(A) \subseteq T$ whenever $A \subseteq T$ and T is $m\Delta$ -open in (U, $\tau_R(X)$). gm- Δ -open sets are the complement of gm- Δ -closed sets.

Proposition 2.1. [6] Every $m\Delta$ -closed set is gm- Δ -closed but not conversely.

Proof. Let A be a $m\Delta$ -closed set and T be any $m\Delta$ -open set containing A. Since A is $m\Delta$ -closed, we have $m\Delta \operatorname{cl}(A) = A \subseteq T$. Hence A is gm- Δ -closed.

The converse of Proposition 2.1 need not be true as seen from the following example.

Example 2.1. Let $U = \{1, 2, 3\}$ with $U/R = \{\{1, 2, 3\}\}$ and $X = \{2, 3\}$. The nano topology $\tau_R(X)$ consists of $\{\phi, U\}$. If $\mu = \{1, 3\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{1, 3\}, U\}$. Then $m\Delta$ -closed sets are $\{\phi, \{2\}, \{1, 3\}, U\}$ and $gm-\Delta$ -closed sets are $\{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, U\}$. Here, $H = \{1, 2\}$ is $gm-\Delta$ -closed set but it is not $m\Delta$ -closed.

3. On Micro Forms of Δ -Open Sets, Continuous maps, gm- Δ -Continuous maps and gm- Δ -Irresolute maps

Definition 3.1. A subset S of a space $(U, \tau_R(X), \mu_R(X))$ is called

- 1. micro semi- Δ -open set (in short, $ms\Delta$ -open) if $S = (A B) \cup (B A)$, where A and B are micro semi-open subsets in U.
- 2. micro α - Δ -open set (in short, m $\alpha\Delta$ -open) if $S = (A B) \cup (B A)$, where A and B are micro α -open subsets in U.
- 3. micro pre- Δ -open set (in short, $mp\Delta$ -open) if $S = (A B) \cup (B A)$, where A and B are micro pre-open subsets in U.
- 4. micro b- Δ -open set (in short, $mb\Delta$ -open) if S = (A B) \cup (B A), where A and B are micro b-open subsets in U.
- 5. micro β - Δ -open set (in short, m $\beta\Delta$ -open) if $S = (A B) \cup (B A)$, where A and B are micro β -open subsets in U.
- 6. micro regular- Δ -open set (in short, $mr\Delta$ -open) if $S = (A B) \cup (B A)$, where A and B are micro regular-open subsets in U.

The complements of the above mentioned micro Δ -open sets are called their respective micro $sm\Delta$ -closed sets.

Proposition 3.1. Le $(U, \tau_R(X), \mu_R(X))$ be micro topological spaces. Then

- 1. Every $m\Delta$ -open set is micro semi- Δ -open.
- 2. Every micro semi-open set is micro semi- Δ -open.

But the converse implications are not true in general. Following is an example:

Example 3.1. Let $U = \{1, 2, 3\}$ with $U/R = \{\{1\}, \{2, 3\}\}$ and $X = \{1\}$. The nano topology $\tau_R(X)$ consists of $\{\phi, \{1\}, U\}$. If $\mu = \{1, 3\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{1\}, \{1, 3\}, U\}$. Then $m\Delta$ -open sets are ϕ , $\{1\}, \{2\}, \{3\}, \{1, 3\}, \{2, 3\}, U$, micro semi-open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$ and micro semi Δ -open sets are ϕ , $\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$. Here, $P = \{2, 3\}$ is micro semi Δ -open. But is neither $m\Delta$ -open nor micro semi-open.

Proposition 3.2. Le $(U, \tau_R(X), \mu_R(X))$ be micro topological spaces. Then

- 1. Every $m\Delta$ -open set is micro α - Δ -open.
- 2. Every $m\Delta$ -open set is micro pre Δ -open.
- 3. Every $m\Delta$ -open set is micro b- Δ -open.
- 4. Every $m\Delta$ -open set is micro β - Δ -open.
- 5. Every micro α -m Δ -open set is micro pre- Δ -open.
- 6. Every micro semi- Δ -open set is micro b- Δ -open.
- 7. Every micro α -open set is micro α - Δ -open.
- 8. Every micro pre-open set is micro pre Δ -open.
- 9. Every micro b-open set is micro b- Δ -open.
- 10. Every micro β -open set is micro β - Δ -open.
- 11. Every micro regular-open set is micro regular- Δ -open.

But the converse of above implications are not true in general. Following is an example:

Example 3.2. Let $U = \{1, 2, 3\}$ with $U/R = \{\{1\}, \{2, 3\}\}$ and $X = \{1\}$. The nano topology $\tau_R(X)$ consists of $\{\phi, \{1\}, U\}$. If $\mu = \{1, 3\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{1\}, \{1, 3\}, U\}$. Then $m\Delta$ -open sets are ϕ , $\{1\}, \{2\}, \{3\}, \{1, 3\}, \{2, 3\}, U$, micro α - Δ -open sets are ϕ , $\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$, micro α - Δ -open sets are ϕ , $\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$, micro β - Δ -open sets are ϕ , $\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$, micro β - Δ -open sets are ϕ , $\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$, micro α -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$, micro β - Δ -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open sets are ϕ , $\{1\}, \{1, 2\}, \{1, 3\}, U$, micro β -open, micro β - Δ -open sets but is not $m\Delta$ -open. (ii) $R = \{2, 3\}$ is micro α - Δ -open, micro pre Δ -open, micro β -open, micro β - Δ -open sets . But is neigher micro α -open nor micro pre-open nor micro β -open.

Example 3.3. Let $U = \{1, 2, 3\}$ with $U/R = \{\{1, 2, 3\}\}$ and $X = \{2, 3\}$. The nano topology $\tau_R(X)$ consists of $\{\phi, U\}$. If $\mu = \{1, 3\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{1, 3\}, U\}$. Then $m\Delta$ -closed sets are ϕ , $\{2\}$, $\{1, 3\}$, U, micro α - Δ -open sets are ϕ , $\{2\}$, $\{1, 3\}$, U, micro α - Δ -open sets are ϕ , $\{2\}$, $\{1, 3\}$, U, micro pre- Δ -open sets are ϕ , $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 2\}$, $\{1, 3\}$, $\{2, 3\}$, U. Here, $L = \{1, 2\}$ is micro pre- Δ -open. But is neigher $m\Delta$ -open nor micro α - Δ -open.

Example 3.4. Let $U = \{1, 2, 3\}$ with $U/R = \{\{1, 2, 3\}\}$ and $X = \{1, 3\}$. The nano topology $\tau_R(X)$ consists of $\{\phi, U\}$. If $\mu = \{2, 3\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{2, 3\}, U\}$. Then $m\Delta$ -closed sets are ϕ ,

{1}, {2, 3}, U, micro semi- Δ -open sets are ϕ , {1}, {2, 3}, U., micro b- Δ -open sets are ϕ , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, U. Here, $M = \{1, 3\}$ is micro b- Δ -open. But is neigher $m\Delta$ -open nor micro semi- Δ -open.

Example 3.5. Let $U = \{1, 2, 3\}$ with $U/R = \{\{1\}, \{2, 3\}\}$ and $X = \{1\}$. The nano topology $\tau_R(X)$ consists of $\{\phi, \{1\}, U\}$. If $\mu = \{2\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{1\}, \{2\}, \{1, 2\}, U\}$. Then $m\Delta$ -open sets are $\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$, micro regular- Δ -open sets are $\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$, micro regular- Δ -open sets are $\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 2\}, \{1, 2\}, \{1, 2\}, \{2\}, \{2, 3\}, is micro regular-<math>\Delta$ -open sets but is not micro-regular-open.

Definition 3.2. A map f : (U, $\tau_R(X)$, $\mu_R(X)$) \rightarrow (V, $\tau_R(X)'$, $\mu_R(X)'$) is called

- 1. $m\Delta$ -continuous if $f^{-1}(G)$ is a $m\Delta$ -open set of $(U, \tau_R(X), \mu_R(X))$ for every $m\Delta$ -open set G of $(V, \tau_R(X)', \mu_R(X)')$.
- 2. micro semi- Δ -continuous if f⁻¹(G) is a micro semi- Δ -open set of (U, $\tau_R(X)$, $\mu_R(X)$) for every $m\Delta$ -open set G of (V, $\tau_R(X)'$, $\mu_R(X)'$).
- 3. micro α - Δ -continuous if f⁻¹(G) is a micro α - Δ -open set of (U, $\tau_R(X)$, $\mu_R(X)$) for every $m\Delta$ -open set G of (V, $\tau_R(X)'$, $\mu_R(X)'$).
- 4. micro pre- Δ -continuous if f⁻¹(G) is a micro pre- Δ -open set of (U, $\tau_R(X)$, $\mu_R(X)$) for every $m\Delta$ -open set G of (V, $\tau_R(X)'$, $\mu_R(X)'$).
- 5. micro b- Δ -continuous if f⁻¹(G) is a micro b- Δ -open set of (U, $\tau_R(X)$, $\mu_R(X)$) for every $m\Delta$ -open set G of (V, $\tau_R(X)'$, $\mu_R(X)'$).
- 6. micro β - Δ -continuous if f⁻¹(G) is a micro β - Δ -open set of (U, $\tau_R(X)$, $\mu_R(X)$) for every $m\Delta$ -open set G of (V, $\tau_R(X)'$, $\mu_R(X)'$).
- 7. micro regular- Δ -continuous if f⁻¹(G) is a micro regular- Δ -open set of (U, $\tau_R(X)$, $\mu_R(X)$) for every $m\Delta$ -open set G of (V, $\tau_R(X)'$, $\mu_R(X)'$).

Theorem 3.1. Le $(U, \tau_R(X), \mu_R(X))$ be micro topological spaces. Then

- 1. Every $m\Delta$ -continuous is micro semi- Δ -continuous but not conversely.
- 2. Every $m\Delta$ -continuous is micro α - Δ -continuous but not conversely.
- 3. Every $m\Delta$ -continuous is micro pre- Δ -continuous but not conversely.
- 4. Every $m\Delta$ -continuous is micro b- Δ -continuous but not conversely.
- 5. Every $m\Delta$ -continuous is micro β - Δ -continuous but not conversely.
- 6. Every micro $\alpha m\Delta$ -continuous is micro pre- Δ -continuous but not conversely.
- 7. Every micro semi- Δ -continuous is micro b- Δ -continuous but not conversely.
- 8. Every micro regular-continuous is micro regular- Δ -continuous but not conversely.

Proof. The proof follows from Proposition 3.1 and 3.2.

Definition 3.3. A map $f: (U, \tau_R(X), \mu_R(X)) \to (V, \tau_R(X)', \mu_R(X)')$ is called gm- Δ -continuous if $f^{-1}(G)$ is a gm- Δ -closed set of $(U, \tau_R(X), \mu_R(X))$ for every $m\Delta$ -closed set G of $(V, \tau_R(X)', \mu_R(X)')$.

Theorem 3.2. Every $m\Delta$ -continuous is gm- Δ -continuous but not conversely.

Proof. The proof follows from Proposition 2.1.

Theorem 3.3. If $f: (U, \tau_R(X), \mu_R(X)) \to (V, \tau_R(X)', \mu_R(X)')$ is $gm-\Delta$ -continuous and $g: (V, \tau_R(X)', \mu_R(X)') \to (W, \tau_R(X)'')$ is $m\Delta$ - continuous then $g \circ f: (U, \tau_R(X), \mu_R(X)) \to (W, \tau_R(X)'')$ is $gm-\Delta$ -continuous.

Proof. Let K be $m\Delta$ -closed set in W. Since g is $m\Delta$ -continuous, $g^{-1}(K)$ is $m\Delta$ -closed in V. Since f is gm- Δ -continuous, $(g \circ f)^{-1}(G) = f^{-1}(g^{-1}(K))$ is gm- Δ -closed in U. Therefore $g \circ f$ is gm- Δ -continuous. \Box

Proposition 3.3. A map $f: (U, \tau_R(X), \mu_R(X)) \to (V, \tau_R(X)', \mu_R(X)')$ is $gm-\Delta$ -continuous if and only if $f^{-1}(G)$ is $gm-\Delta$ -open in $(U, \tau_R(X), \mu_R(X))$ for every $m\Delta$ -open set G in $(V, \tau_R(X)', \mu_R(X)')$.

Proof. Let $f: (U, \tau_R(X), \mu_R(X)) \to (V, \tau_R(X)', \mu_R(X)')$ be gm- Δ -continuous and G be an $m\Delta$ -open set in $(V, \tau_R(X)', \mu_R(X)')$. Then G^c is $m\Delta$ -closed in $(V, \tau_R(X)', \mu_R(X)')$ and since f is gm- Δ -continuous, $f^{-1}(G^c)$ is gm- Δ -closed in $(U, \tau_R(X), \mu_R(X))$. But $f^{-1}(G^c) = f^{-1}((G))^c$ and so $f^{-1}(G)$ is gm- Δ -open in $(U, \tau_R(X), \mu_R(X))$.

Conversely, assume that $f^{-1}(G)$ is gm- Δ -open in $(U, \tau_R(X), \mu_R(X))$ for each $m\Delta$ -open set G in $(V, \tau_R(X)', \mu_R(X)')$. Let F be a $m\Delta$ -closed set in $(V, \tau_R(X)', \mu_R(X)')$. Then F^c is $m\Delta$ -open in $(V, \tau_R(X)', \mu_R(X)')$ and by assumption, $f^{-1}(F^c)$ is gm- Δ -open in $(U, \tau_R(X), \mu_R(X))$. Since $f^{-1}(F^c) = f^{-1}((F))^c$, we have $f^{-1}(F)$ is $m\Delta$ -closed in $(U, \tau_R(X), \mu_R(X))$ and so f is gm- Δ -continuous.

Definition 3.4. A map f: (U, $\tau_R(X)$, $\mu_R(X)$) \rightarrow (V, $\tau_R(X)'$, $\mu_R(X)'$) is called

- 1. $m\Delta$ -irresolute if $f^{-1}(G)$ is a micro semi Δ -closed set of (U, $\tau_R(X)$, $\mu_R(X)$) for every micro semi Δ -closed set G of (V, $\tau_R(X)'$, $\mu_R(X)'$).
- 2. gm- Δ -irresolute if f⁻¹(G) is a gm- Δ -closed set of (U, $\tau_R(X)$, $\mu_R(X)$) for every gm- Δ -closed set G of (V, $\tau_R(X)'$, $\mu_R(X)'$).

Example 3.6. Let $U = \{1, 2, 3\}$ with $U/R = \{\{1\}, \{2, 3\}\}$ and $X = \{1\}$. The nano topology $\tau_R(X)$ consists of $\{\phi, \{1\}, U\}$. If $\mu = \{1, 3\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{1\}, \{1, 3\}, U\}$. Then micro semi-closed sets are $\phi, \{2\}, \{3\}, \{2, 3\}, U$ and micro semi Δ -closed sets are $\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$. Let $V = \{1, 2, 3\}$ with $V/R = \{\{1, 2, 3\}\}$ and $X = \{2, 3\}$. The micro topology $\tau_R(X)' = \{\phi, V\}$. If $\mu = \{1, 3\}$ then the micro topology $\mu_R(X) = \{\phi, \{1, 3\}, V\}$. Then micro semi-closed sets are $\phi, \{2\}, V$ and micro semi Δ -closed sets are $\phi, \{2\}, \{1, 3\}, V$. Define $f: (U, \tau_R(X), \mu_R(X)) \to (V, \tau_R(X)', \mu_R(X)')$ to be the identity map. Then f is $m\Delta$ -irresolute.

Example 3.7. Let $U = \{1, 2, 3\}$ with $U/R = \{\{1, 2, 3\}\}$ and $X = \{2, 3\}$. The nano topology $\tau_R(X)$ consists of $\{\phi, U\}$. If $\mu = \{1, 3\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{1, 3\}, U\}$. Then $m\Delta$ -closed sets are $\phi, \{2\}, \{1, 3\}, U$ and $gm-\Delta$ -closed sets are $\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$. Let $V = \{1, 2, 3\}$ with

 $V/R = \{\{1\}, \{2, 3\}\}$ and $X = \{1\}$. The micro topology $\tau_R(X)'$ consists of $\{\phi, \{1\}, V\}$. If $\mu = \{1, 3\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{1\}, \{1, 3\}, V\}$. Then $m\Delta$ -closed sets are $\phi, \{1\}, \{2\}, \{1, 2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, V$ and $gm-\Delta$ -closed sets are $\phi, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, V$. Define $f: (U, \tau_R(X), \mu_R(X)) \to (V, \tau_R(X)', \mu_R(X)')$ to be the identity map. Then f is $gm-\Delta$ -irresolute.

Theorem 3.4. Every gm- Δ -irresolute map is gm- Δ -continuous but not conversely.

Proof. Let $f: (U, \tau_R(X), \mu_R(X)) \to (V, \tau_R(X)', \mu_R(X)')$ be a gm- Δ -irresolute map. Let G be a $m\Delta$ -closed set of $(V, \tau_R(X)', \mu_R(X)')$. Then by the Proposition 2.1, G is gm- Δ -closed. Since f is gm- Δ -irresolute, then $f^{-1}(G)$ is a gm- Δ -closed set of $(U, \tau_R(X), \mu_R(X))$. Therefore f is gm- Δ -continuous.

Theorem 3.5. Let $f: (U, \tau_R(X), \mu_R(X)) \to (V, \tau_R(X)', \mu_R(X)')$ and $g: (V, \tau_R(X)', \mu_R(X)') \to (W, \tau_R(X)'')$ be two arbitrary maps. Then

- 1. $g \circ f$ is $gm-\Delta$ -continuous if g is $m\Delta$ -continuous and f is $gm-\Delta$ -continuous.
- 2. $g \circ f$ is $gm-\Delta$ -irresolute if both f and g are $gm-\Delta$ -irresolute.
- 3. $g \circ f$ is $gm-\Delta$ -continuous if g is $gm-\Delta$ -continuous and f is $gm-\Delta$ -irresolute.

Proof. Omitted.

Definition 3.5. A map f: (U, $\tau_R(X)$, $\mu_R(X)$) \rightarrow (V, $\tau_R(X)'$, $\mu_R(X)'$) is called

- 1. contra- $m\Delta$ -continuous if $f^{-1}(G)$ is a $m\Delta$ -closed set of (U, $\tau_R(X)$, $\mu_R(X)$) for every $m\Delta$ -open set G of (V, $\tau_R(X)'$, $\mu_R(X)'$).
- 2. contra-gm- Δ -continuous if $f^{-1}(G)$ is a gm- Δ -closed set of (U, $\tau_R(X)$, $\mu_R(X)$) for every $m\Delta$ -open set G of (V, $\tau_R(X)'$, $\mu_R(X)'$).

Proposition 3.4. Every contra- $m\Delta$ -continuous is contra-gm- Δ -continuous but not conversely.

Proof. Let $f: (U, \tau_R(X), \mu_R(X)) \to (V, \tau_R(X)', \mu_R(X)')$ be a contra $m\Delta$ -continuous map and let G be any $m\Delta$ -open set in $(V, \tau_R(X)', \mu_R(X)')$. Then, $f^{-1}(G)$ is $m\Delta$ -closed in U. Since every $m\Delta$ -closed set is gm- Δ -closed, $f^{-1}(G)$ is gm- Δ -closed in U. Therefore f is contra-gm- Δ -continuous.

Example 3.8. Let $U = \{1, 2, 3\}$ with $U/R = \{\{1, 2, 3\}\}$ and $X = \{2, 3\}$. The nano topology $\tau_R(X)$ consists of $\{\phi, U\}$. If $\mu = \{1, 3\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{1, 3\}, U\}$. Then $m\Delta$ -closed sets are $\phi, \{2\}, \{1, 3\}, U$ and $gm-\Delta$ -closed sets are $\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, U$. Let $V = \{1, 2, 3\}$ with $V/R = \{\{1\}, \{2, 3\}\}$ and $X = \{1\}$. The micro topology $\tau_R(X)'$ consists of $\{\phi, \{1\}, V\}$. If $\mu = \{1, 3\}$ then the micro topology $\mu_R(X)$ consists of $\{\phi, \{1\}, \{1, 3\}, V\}$. Then $m\Delta$ -closed sets are $\phi, \{1\}, \{2\}, \{1, 3\}, \{2, 3\}, V$. If $\mu = \{1, 2\}, \{1, 3\}, \{2, 3\}, V$ and $gm-\Delta$ -closed sets are $\phi, \{1\}, \{2\}, \{1, 3\}, V\}$. Then $m\Delta$ -closed sets are $\phi, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, V$. Define $f: (U, \tau_R(X), \mu_R(X)) \rightarrow (V, \tau_R(X)', \mu_R(X)')$ to be the identity map. Then f is contra- $gm-\Delta$ -continuous but not contra $m\Delta$ -continuous, since $f^{-1}(\{2, 3\}) = \{2, 3\}$ is not $m\Delta$ -closed in $(U, \tau_R(X), \mu_R(X))$.

29

Conclusion

In this article, the idea of introducing new classes of open-like sets micro semi Δ -open, micro α - Δ -open, micro pre- Δ -open, micro β - Δ -open, micro regular- Δ -open sets, micro semi Δ -continuous, micro α - Δ -continuous, micro pre- Δ -continuous, micro b- Δ -continuous micro β - Δ -continuous and micro regular- Δ -continuous in micro topological spaces We introduced $m\Delta$ -continuous maps, gm- Δ -continuous maps, $m\Delta$ -irresolute maps, gm- Δ -irresolute maps, contra $m\Delta$ -continuous maps and contra-gm- Δ -continuous micro topological spaces and discuss some of their properties. In future, we have extended this work in various micro topological fields with some applications.

Acknowledgment

I thank to referees for giving their useful suggestions and help to improve this manuscript.

References

- [1] Chandrasekar S, On micro topological spaces, Journal of New Theory, 2019; (26): 23-31.
- [2] Chandrasekar S, Swathi G, Micro α-open sets in Micro Topological Spaces, International Journal of Research in Advent Technology, 2018; 6(10): 2633-2637.
- [3] Ganesan S, Herin Wise Bell P, Jeyashri S, New concepts of micro topological spaces via micro ideals, International Research Journal of Education and Technology, 2022; 4(1): 168-191.
- S, On α - Δ -open sets and generalized [4] Ganesan Δ -closed sets in topological spaces. Inter-12(10): 213-239. national Journal of Analytical and Experimental Model Analysis, 2020;DOI:18.0002.IJAEMA.2020.V12I10.200001.01568590054681.
- [5] Ganesan S, On $m\Delta$ -open sets in micro topological spaces, Annals of Communications in Mathematics, 2023; 6(4): 247-252.
- [6] Ganesan S, Generalized micro Δ -closed sets in micro topological spaces, Journal of science and arts (to appear).
- [7] Ibrahim H. Z , Micro β -open sets in micro topology, General Letters in Mathematics, 2020; 8(1): 8-15.
- [8] Ibrahim H. Z. On micro b-open sets, Asia Mathematika, 2022; 6(2): 20-32.
- [9] Lellis Thivagar M, Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 2013; 1(1): 31-37.
- [10] Nour, T. M, Ahmad Mustafa Jaber, semi Δ-open sets in topological spaces, International Journal of Mathematics Trends and Technology, 2020; 66(8): 139-143.
- [11] M. Veera Kumar, On Δ -open sets in topology, To appear