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Abstract: Our study aims to obtain integral representations of Jacobsthal Jkn and Jacobsthal-Lucas Lkn , and then to

use these integral representations to derive integral representations of Jacobsthal Jkn+r and Jacobsthal-Lucas Lkn+r ,

where n ∈ Z⩾0 = {0, 1, 2, . . .} is a non-negative integer, k ∈ Z>0 = {1, 2, 3, . . .} is an arbitrary but fixed positive integer,

while r ∈ Z⩾0 is an arbitrary but fixed non-negative integer.
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1. Introduction

Numerous studies use integral representations of special numbers obtained from different counting sequences as

a tool. The importance of obtaining integral representations of different special numbers is illustrated by this

fact.

There has been considerable interest in these integral representations of special numbers. Several papers

have been devoted to the study of the integral representations of some special numbers. It has been demonstrated

in the literature that integral representations of special numbers can be obtained using standard or advanced

mathematics from the integral calculus.

Several recent developments have been made in integral representations of special numbers arising from

different counting sequences.

Many studies have been conducted on the representation of Catalan numbers as integrals.

[10] and [13], we recall that the Catalan numbers Cn are defined by

Cn =
1

n+ 1

(
2n
n

)
, n = 0, 1, 2, . . . .

Using the properties of a combinatorial system, Dana-Picard [4] showed that a Catalan number can be

defined in a variety of ways. Additionally, Dana-Picard presented integral representations of these Catalan

numbers in that paper.

Using two multiparameter families of definite integrals, Dana-Picard and Zeitoun [5] computed closed

forms. As a result, they obtained combinatorial formulas.

In [6], Dana-Picard derived a combinatorial identity for the Catalan numbers as well as two integral

representations of them.
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By searching for closed forms of integrals depending on a parameter, Dana-Picard [7] obtained integral

identities.

In [8], Dana-Picard and Zeitoun found that a closed formula could be computed for improper integrals

using the Wallis formula and a non-straightforward recurrence formula. Hence, a new integral representation is

provided for Catalan numbers.

By using the Mellin transform, Penson and Sixdeniers [14] developed an integral representation for

Catalan numbers.

Recall from [1] that the Fibonacci numbers Fn, n = 0, 1, 2, . . . , are defined by F0 = 0, F1 = 1 and

Fn+2 = Fn+1 + Fn, n = 0, 1, 2, . . .

and Lucas numbers Ln, n = 0, 1, 2, . . . , are defined by L0 = 2, L1 = 1 and

Ln+2 = Ln+1 + Ln, n = 0, 1, 2, . . . .

In their publication [9], Glasser and Zhou presented an integral representation of the Fibonacci numbers.

In [15], Stewart gave integral representations of Fibonacci and Lucas numbers.

Recall from [12] that the Motzkin numbers Mn, n = 0, 1, 2, . . . , are defined by

Mn =

⌊n/2⌋∑
k=0

(
n
2k

)
Ck, n = 0, 1, 2, . . . .

The integral representation of Motzkin numbers was developed by Mccalla and Nkwanta [11].

Recall from [2], [3] and [16] that the Jacobsthal numbers Jn, n = 0, 1, 2, . . . , are defined by J0 =

0,J1 = 1 and

Jn+2 = Jn+1 + 2Jn, n = 0, 1, 2, . . .

and the formula of the general term is given by

Jn =
1

3
[2n − (−1)n] . (1)

Recall from [2], [3] and [16] that the Jacobsthal-Lucas numbers Ln, n = 0, 1, 2, . . . , are defined by

L0 = 2,L1 = 1 and

Ln+2 = Ln+1 + 2Ln, n = 0, 1, 2, . . .

and the formula of the general term is given by

Ln = 2n + (−1)n. (2)

There are a number of interesting mathematical facts and theorems associated with the Jacobsthal

numbers Jn and Jacobsthal-Lucas numbers Ln that can be applied to a wide range of problems today. Please

refer to [2], [3] and [16] and closely related references for information on new developments of these types of

numbers.

Jacobsthal numbers have practical applications in areas such as computer science, cryptography, and

combinatorial design. For instance, they can be used in algorithms for efficient data encoding and decoding.
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Additionally, Jacobsthal numbers are useful in the construction of certain types of error-correcting codes, which

are essential for reliable data transmission.

The integral representation of Jacobsthal numbers allows us to calculate the values of Jacobsthal numbers

explicitly and to approximate them asymptotically. This representation is also useful in understanding the

properties of Jacobsthal numbers. This representation can also be used to find the upper and lower bounds

for the Jacobsthal numbers. Additionally, this representation can be used to study the growth of Jacobsthal

numbers.

In this study, we will obtain integral representations of Jacobsthal Jkn and Jacobsthal-Lucas Lkn , and

from these integral representations we will derive integral representations of Jacobsthal Jkn+r and Jacobsthal-

Lucas Lkn+r , where n ∈ Z⩾0 = {0, 1, 2, . . .} is a non-negative integer, k ∈ Z>0 = {1, 2, 3, . . .} is an arbitrary

but fixed positive integer, while r ∈ Z⩾0 is an arbitrary but fixed non-negative integer.

The following section presents several facts concerning Jacobsthal and Jacobsthal-Lucas numbers.

2. Preliminaries

This section examines some key facts about Jacobsthal and Jacobsthal-Lucas numbers.

Let α = 2. From (1), it follows that

Jn =
1

3
(αn − (−1)n) , (3)

called Binet’s formula for the Jacobsthal numbers and from (2), it follows that

Ln = αn + (−1)n, (4)

called Binet’s formula for the Jacobsthal-Lucas numbers.

α and these two types of numbers have the following relationships.

1. Using (3) and (4), we find that the connection between the Jacobsthal numbers, the Jacobsthal-Lucas

numbers, and α is for n ∈ Z⩾0

αn =
Ln + 3Jn

2
. (5)

2. In order to establish the connection between the Jacobsthal numbers and the Jacobsthal-Lucas numbers,

straightforward computation yields from (3) and (4) for n ∈ Z⩾0

L2
n − 9J 2

n = (αn + (−1)n)
2 − 9

(
1

3
(αn − (−1)n)

)2

=
(
α2n + (−1)2n + 2αn(−1)n

)
− 9

(
1

9

(
α2n + (−1)2n − 2αn(−1)n

))
= 4αn(−1)n

= 2n+2(−1)n. (6)
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3. By direct calculation, we determine the Jacobsthal index addition formulae for m, r ∈ Z⩾0, from (3) and

(4)

JrLm + LrJm =
1

3
(αr − (−1)r) (αm + (−1)m)

+
1

3
(αr + (−1)r) (αm − (−1)m)

=
1

3

(
αr+m + αr(−1)m − αm(−1)r − (−1)r+m

)
+

1

3

(
αr+m − αr(−1)m + αm(−1)r − (−1)r+m

)
=

2

3

(
αr+m − (−1)r+m

)
= 2Jm+r. (7)

4. The Jacobsthal-Lucas index addition formulae can be derived directly from (3) and (4) for m, r ∈ Z⩾0

LmLr + 9JmJr = (αm + (−1)m) (αr + (−1)r)

+ 9

(
1

3

)2

(αm − (−1)m) (αr − (−1)r)

= αm+r + (−1)rαm + (−1)mαr + (−1)m+r

+ αm+r − (−1)rαm − (−1)mαr + (−1)m+r

= 2
(
αm+r + (−1)m+r

)
= 2Lm+r. (8)

3. Integral representations for the Jacobsthal Numbers Jkn and the Jacobsthal-Lucas Numbers

Lkn

The purpose of this section is to present integral representations of Jacobsthal numbers Jkn and for the

Jacobsthal-Lucas numbers Lkn , where n ∈ Z⩾0 = {0, 1, 2, . . .} is a non-negative integer and k ∈ Z>0 =

{1, 2, 3, . . .} is an arbitrary but fixed positive integer.

The following theorem gives an integral representation of the Jacobsthal numbers Jkn . Based on this

theorem, we derive an integral representation of the Jacobsthal numbers Jn , an integral representation of the

Jacobsthal numbers J2n with even integer indexes, an integral representation of the Jacobsthal numbers J2n+1

with odd integer index and Binet’s formula for Jkn .

Theorem 3.1. We have an integral representation of the Jacobsthal numbers Jkn by the integral

Jkn =
nJk

2n

1∫
−1

(Lk + 3Jkx)
n−1

dx (9)

for n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0 .
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Proof. Let I be the integral to be found. We make the substitution

u = g(x) = Lk + 3Jkx

because its differential is du = 3Jkdx , which, apart from the factor 3Jk , occurs in the integral. Then, we obtain

dx = 1
3Jk

du . Before substituting, determine the new upper and lower limits of integration. When x = −1, the

new lower limit is u = g(−1) and when x = 1, the new upper limit is u = g(1). Now, we can substitute to

obtain

nJk

2n
I =

nJk

2n

1∫
−1

(Lk + 3Jkx)
n−1

dx

=
nJk

2n
1

3Jk

g(1)∫
g(−1)

un−1du

=
1

3

n

2n
1

n
[un]

g(1)
g(−1)

=
1

3

1

2n
[(Lk + 3Jkx)

n
]
1
−1

=
1

3

[(
Lk + 3Jkx

2

)n]1
−1

=
1

3

[(
Lk + 3Jk

2

)n

−
(
Lk − 3Jk

2

)n]
. (10)

From (5) and (6), direct calculation gives

1

αn
=

2

Ln + 3Jn

=
2 (Ln − 3Jn)

(Ln + 3Jn) (Ln − 3Jn)

=
2 (Ln − 3Jn)

L2
n − 9J 2

n

=
2

2n+2 (−1)
n (Ln − 3Jn)

=
(−1)

n

2n+1
(Ln − 3Jn) .

Hence, we have

(−1)
n
=

Ln − 3Jn

2
. (11)
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From (10) and (11), it follows that

nJk

2n
I =

1

3

[(
αk

)n −
(
(−1)

k
)n]

=
1

3

[
αkn − (−1)

kn
]

= Jkn.

Thus, the proof of Theorem 3.1 is completed.

In the following corollary, an integral representation of the Jacobsthal numbers Jn is represented.

Corollary 3.1. We have an integral representation of the Jacobsthal numbers Jn by the integral

Jn =
n

2n

1∫
−1

(1 + 3x)
n−1

dx

for n ∈ Z⩾0 .

Proof. If we write k = 1 in (9), then we obtain the integral representations of Jacobsthal numbers Jn as follows:

Jn =
nJ1

2n

1∫
−1

(L1 + 3xJ1)
n−1

dx

=
n

2n

1∫
−1

(1 + 3x)
n−1

dx.

Thus, the proof of Corollary 3.1 is completed.

In the following corollary, an integral representation of the Jacobsthal numbers with even integer indexes

is represented.

Corollary 3.2. We have an integral representation of the Jacobsthal numbers J2n by the integral

J2n =
n

2n

1∫
−1

(5 + 3x)
n−1

dx. (12)

for n ∈ Z⩾0 .

Proof. If we set k = 2 in (9), then we get an integral representation of the Jacobsthal numbers with even integer

index by

J2n =
nJ2

2n

1∫
−1

(L2 + 3xJ2)
n−1

dx

=
n

2n

1∫
−1

(5 + 3x)
n−1

dx.

The proof of Corollary 3.2 is complete.
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The following corollary gives an integral representation of the Jacobsthal numbers with odd integer index.

Corollary 3.3. We have an integral representation of the Jacobsthal numbers J2n+1 by the integral

J2n+1 =
1

2n+1

1∫
−1

(5 + n+ 3 (n+ 1)x) (5 + 3x)
n−1

dx (13)

for n ∈ Z⩾0 .

Proof. We first recall the obvious identity J2n+2 = J2n+1 + 2J2n . Then, from this identity, it follows that

J2n+1 = J2n+2 − 2J2n. (14)

Using a reindexing of n 7→ n+ 1 in (12), from (12) and (14) straightforward computation yields

J2n+1 = J2n+2 − 2J2n

=
n+ 1

2n+1

1∫
−1

(5 + 3x)
n
dx− 2

n

2n

1∫
−1

(5 + 3x)
n−1

dx

=
1

2n+1

1∫
−1

[(n+ 1) (5 + 3x)− 4n] (5 + 3x)
n−1

dx

=
1

2n+1

1∫
−1

[5n+ 5 + 3 (n+ 1)x− 4n] (5 + 3x)
n−1

dx

=
1

2n+1

1∫
−1

(5 + n+ 3 (n+ 1)x) (5 + 3x)
n−1

dx.

The proof of Corollary 3.3 is complete.

The following corollary gives a thinly disguised form of Binet’s formula for Jkn .

Corollary 3.4. The Jacobsthal numbers Jkn can be represented by

Jkn =
n

3

αk∫
(−1)k

tn−1dt

for n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0 .

Proof. Using the substitution t = 1
2 (Lk + 3Jkx) in (9), we have dt = 3Jk

2 dx and dx = 2
3Jk

dt . To find the new

limits of integration (9) we note that when x = −1,

t =
1

2
(Lk − 3Jk) = (−1)

k
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and when x = 1,

t =
1

2
(Lk + 3Jk) = αk.

Therefore, from (9) we obtain

Jkn =
nJk

2n

1∫
−1

(Lk + 3Jkx)
n−1

dx

=
nJk

2n

αk∫
(−1)k

(2t)
n−1 2

3Jk
dt

=
nJk

2n
2n−1 2

3Jk

αk∫
(−1)k

(t)
n−1

dt

=
n

3

αk∫
(−1)k

tn−1dt.

The proof of Corollary 3.4 is complete.

The following theorem gives an integral representation of the Jacobsthal-Lucas numbers.

Theorem 3.2. We have an integral representation of the Jacobsthal-Lucas numbers Lkn by the integral

Lkn =
1

2n

1∫
−1

(Lk + 3Jk(n+ 1)x) (Lk + 3Jkx)
n−1

dx (15)

for n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0 .

Proof. Let

I1 =

∫
(Lk + 3Jk(n+ 1)x) (Lk + 3Jkx)

n−1
dx.

To evaluate this integral we use the integration by parts. Let

u = Lk + 3Jk(n+ 1)x

and

dv = (Lk + 3Jkx)
n−1

dx.

Then,

du = 3Jk(n+ 1)dx

and

v =

∫
(Lk + 3Jkx)

n−1
dx.
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To evaluate the integral that we have obtained, v =
∫
(Lk + 3Jkx)

n−1
dx , if we let t = Lk + 3Jkx , then

dt = 3Jkdx , so dx = 1
3Jk

dt . Therefore,

v =

∫
1

3Jk
tn−1dt

=
1

3nJk
tn

=
1

3nJk
(Lk + 3Jkx)

n
.

If we let

I2 =
1

2n

1∫
−1

(Lk + 3Jk(n+ 1)x) (Lk + 3Jkx)
n−1

dx,

then we obtain

I2 =
1

2n

[uv]
1
−1 −

1∫
−1

vdu


=

1

2n

{
1

3nJk
[(Lk + 3Jk(n+ 1)x) (Lk + 3Jkx)

n
]
1
−1

−3Jk(n+ 1)
1

3nJk

1∫
−1

(Lk + 3Jkx)
n
dx


=

1

3nJk

(
Lk + 3Jk

2

)n

(Lk + 3Jk(n+ 1)) (16)

− 1

3nJk

(
Lk − 3Jk

2

)n

(Lk − 3Jk(n+ 1))

− n+ 1

n2n

1∫
−1

(Lk + 3Jkx)
n
dx.

From (9), we have that

Jk(n+1)
2n+1

(n+ 1)Jk
=

1∫
−1

(Lk + 3Jkx)
n
dx. (17)

Hence, from (16) and (17) we get

I2 =
1

3nJk

(
Lk + 3Jk

2

)n

(Lk + 3Jk(n+ 1))

− 1

3nJk

(
Lk − 3Jk

2

)n

(Lk − 3Jk(n+ 1))

− n+ 1

n2n
2n+1

(n+ 1)Jk
Jkn+k.
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By (5), (7) and (11), it follows that

I2 =
1

3nJk
αkn (Lk + 3Jk(n+ 1))

− 1

3nJk
(−1)

kn
(Lk − 3Jk(n+ 1))

− 2

nJk
Jkn+k

=
1

nJk

[
1

3

(
αkn − (−1)

kn
)
Lk

+
(
αkn + (−1)

kn
)
(n+ 1)Jk

−2Jkn+k]

=
1

nJk
[LkJkn + (n+ 1)JkLkn − 2Jkn+k]

=
1

nJk
[nJkLkn + LkJkn + JkLkn − 2Jkn+k] . (18)

We can verify the following equation by recalling the formula given in (7) and substituting k for r and kn for
m :

LkJkn + JkLkn − 2Jkn+k = 0.

As a result, (18) provides us the result I2 = Lkn . As a consequence, the theorem can be proved by obtaining

the result in (15), which concludes the proof of the theorem.

Corollary 3.5. We have an integral representation of the Jacobsthal-Lucas numbers Ln by the integral

Ln =
1

2n

1∫
−1

(1 + 3(n+ 1)x) (1 + 3x)
n−1

dx

for n ∈ Z⩾0 .

Proof. As a result of writing k = 1 at (15), we obtain integral representations for Jacobsthal-Lucas numbers

Ln in the following way:

Ln =
1

2n

1∫
−1

(L1 + 3J1(n+ 1)x) (L1 + 3J1x)
n−1

dx

=
1

2n

1∫
−1

(1 + 3(n+ 1)x) (1 + 3x)
n−1

dx

The proof of Corollary 3.5 is completed.

The following corollary gives an integral representation of the Jacobsthal-Lucas numbers with even integer

index.
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Corollary 3.6. We have an integral representation of the Jacobsthal-Lucas numbers L2n by the integral

L2n =
1

2n

1∫
−1

(5 + 3(n+ 1)x) (5 + 3x)
n−1

dx (19)

for n ∈ Z⩾0 .

Proof. If we set k = 2 in (15), then we get an integral representation of the even Jacobsthal-Lucas numbers by

L2n =
1

2n

1∫
−1

(L2 + 3J2(n+ 1)x) (L2 + 3J2x)
n−1

dx

=
1

2n

1∫
−1

(5 + 3(n+ 1)x) (5 + 3x)
n−1

dx.

The proof of Corollary 3.6 is complete.

The following corollary gives an integral representation of the Pell-Luas numbers with even integer index.

Corollary 3.7. We have an integral representation of the Jacobsthal-Lucas numbers L2n+1 by the integral

L2n+1 =
1

2n+1

1∫
−1

(5 + 9n+ 3(n+ 1)x) (5 + 3x)
n−1

dx (20)

for n ∈ Z⩾0 .

Proof. Recalling that the identity in (80) takes the form of

2Lm+r = LmLr + 9JmJr,

by substituting 2n for m and 1 for r , we get the following identity

2L2n+1 = L2nL1 + 9J2nJ1

=
1

2
(L2n + 9J2n) . (21)

Substituting the integral representations obtained for L2n and J2n in 21 results in the following integral

11
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representation for L2n+1 :

L2n+1 =
1

2
L2n +

9

2
J2n

=
1

2n+1

1∫
−1

(5 + 3(n+ 1)x) (5 + 3x)
n−1

dx

+
9

2

n

2n

1∫
−1

(5 + 3x)
n−1

dx

=
1

2n+1

1∫
−1

(5 + 9n+ 3(n+ 1)x) (5 + 3x)
n−1

dx.

Thus, the proof of Corollary 3.7 is completed.

The following corollary gives a thinly disguised form of Binet’s formula for Lkn .

Corollary 3.8. The Jacobsthal-Lucas numbers Lkn can be represented by

Lkn = n

αk∫
(−1)k

tn−1dt.

for n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0 .

Proof. The proof of Corollary 3.8 can be done similarly to the proof of Corollary 3.4.

In the following section, we obtain the integral representations for the Jacobsthal Numbers Jkn+r and

the Jacobsthal-Lucas Numbers Lkn+r . As a result of substituting (1, 0), (2, 0), and (2, 1) for (k, r), we are

able to obtain integral representations for Jn , J2n , J2n+1 , Ln , L2n and L2n+1 .

4. Integral representations for the Jacobsthal Numbers Jkn+r and the Jacobsthal-Lucas Numbers

Lkn+r

This section presents the integral representations of Jacobsthal numbers Jkn+r and Jacobsthal-Lucas numbers

Lkn+r , derived from the integral representations of Jacobsthal numbers Jkn and Jacobsthal-Lucas numbers

Lkn , where n ∈ Z⩾0 = {0, 1, 2, . . .} is a non-negative integer, k ∈ Z>0 = {1, 2, 3, . . .} is an arbitrary but fixed

positive integer, while r ∈ Z⩾0 is an arbitrary but fixed non-negative integer.

Theorem 4.1 presents the integral representations of Jacobsthal numbers Jkn+r . Therefore, in the integral

representation given by Theorem 4.1, substituting different integer pairs (k, r) yields integral representations

for different Jacobsthal numbersJkn+r .

Theorem 4.1. For n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0 and r ∈ Z⩾0 , the Jacobsthal numbers Jkn+r can

be represented by the integral

Jkn+r =
1

2n+1

1∫
−1

(nJkLr + JrLk + 3JkJr(n+ 1)x) (Lk + 3Jkx)
n−1

dx. (22)
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Proof. The Jacobsthal index addition formula

JrLm + LrJm = 2Jm+r

given by (7) with m replaced with kn produces

2Jkn+r = JknLr + JrLkn.

With the help of formulas (9) and (15), we can express Jkn and Lkn in terms of Jk , Lr , Jr and Lk . This

allows us to obtain an integral representation for Jkn+r . By substituting the integral representations of Jkn

and Lkn given by (9) and (15) respectively, the following result emerges immediately:

2Jkn+r = LrJkn + JrLkn

= Lr
nJk

2n

1∫
−1

(Lk + 3Jkx)
n−1

dx

+ Jr
1

2n

1∫
−1

(Lk + 3Jk(n+ 1)x) (Lk + 3Jkx)
n−1

dx

=
1

2n

1∫
−1

(nJkLr + JrLk + 3JkJr(n+ 1)x) (Lk + 3Jkx)
n−1

dx,

and completes the proof.

As indicated in the following remark, the results in Corollary 3.1, Corollary 3.2 and Corollary 3.3 can

also be obtained using Theorem 4.1.

Remark 4.1. In the integral representation at (22) given by Theorem 4.1, substituting (1, 0) , (2, 0) , and (2, 1)

for (k, r) yields integral representations for Jn , J2n , and J2n+1 .

Theorem 4.2 presents the integral representations of Jacobsthal-Lucas numbers Lkn+r . Therefore, in

the integral representation given by Theorem 4.2, substituting different integer pairs (k, r) yields integral

representations for different Jacobsthal-Lucas numbers Lkn+r .

Theorem 4.2. For n ∈ Z⩾0 and arbitrary but fixed k ∈ Z>0 and r ∈ Z⩾0 , the Jacobsthal-Lucas numbers

Lkn+r can be represented by the integral

Lkn+r =
1

2n+1

1∫
−1

(9nJkJr + LkLr + 3JkLr(n+ 1)x) (Lk + 3Jkx)
n−1

dx. (23)

Proof. The Jacobsthal-Lucas index addition formula

LmLr + 9JmJr = 2Lm+r

given by (1.6) with m replaced with kn produces

LknLr + 9JknJr = 2Lkn+r.

13
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Formulas (9) and (15) allow us to write Jkn and Lkn in terms of Jk , Lr , Jr and Lk . In this way, we can

obtain an integral representation for Jkn+r . When the integral representations of Jkn and Lkn given by (9)

and (15) respectively are substituted into the given index addition formula, the result follows immediately:

2Lkn+r = 9JrJkn + LrLkn

= 9Jr
nJk

2n

1∫
−1

(Lk + 3Jkx)
n−1

dx

+ Lr
1

2n

1∫
−1

(Lk + 3Jk(n+ 1)x) (Lk + 3Jkx)
n−1

dx

=
1

2n

1∫
−1

(9nJkJr + LkLr + 3JkLr(n+ 1)x) (Lk + 3Jkx)
n−1

dx,

and completes the proof.

In the following remark, it is indicated that the results given in Corollary 3.5, Corollary 3.6 and Corollary

3.7 can be obtained by using Thereom 4.2.

Remark 4.2. In the integral representation at (23) given by Theorem 4.2, substituting (1, 0) , (2, 0) , and (2, 1)

for (k, r) yields integral representations for Ln , L2n and L2n+1 .

5. Conclusion

In the first part of this note, integral representations are obtained for Jacobsthal numbers Jkn as well as

Jacobsthal-Lucas numbers Lkn , and then based on those integral representations, integral representations are

given for Jacobsthal numbers Jkn+r and Jacobsthal-Lucas numbers Lkn+r , where n ∈ Z⩾0 = {0, 1, 2, . . .} is

a non-negative integer, k ∈ Z>0 = {1, 2, 3, . . .} is an arbitrary but fixed positive integer, while r ∈ Z⩾0 is an

arbitrary but fixed non-negative integer.
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