

On geometric properties of generalized concave meromorphic functions

A. A. \mathbf{YUSUF}^{1*} and M. \mathbf{DARUS}^2

¹Department of Mathematics, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria. ORCID iD: 0000-0002-6322-0970 ²Department of Mathematical Sciences Faculty of Science and Technology

Universiti Kebangsaan Malaysia. Bangi 43600 Selangor.

ORCID iD: 0000-0001-9138-916X

Received: 15 Feb 2024	•	Accepted: 14 Apr 2024	•	Published Online: 01 Jul 2024

Abstract: In this work, we introduce a generalized class of concave meromorphic functions denoted as $\mathcal{K}_0^n(\zeta)$ defined by Salagean differential operator \mathcal{D}^n , which is an operator defined on the concave meromorphic function g(z), $\mathcal{D}^n g(z) = \mathcal{D}(\mathcal{D}^{n-1}g(z)), \{n \in \mathbb{N} \cup \{0\}\}$, and study some of the properties namely; inclusion, integral representation, closure under an integral operator, sufficient condition, coefficient inequality, growth and distortion of this class.

Key words: Salagean operator, concave and meromorphic functions

1. Introduction

Let g be define as

$$g(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k.$$
 (1)

meromorphic function with a simple pole at the origin, the unit disk be denoted by $\{\mathbb{U} = |z| < 1\}$ and concave domain which is the exterior of a closed convex domain be denoted by \mathbb{E} . We say the function g of the form (1), is concave if it maps the \mathbb{U} to \mathbb{E} , denoted by \mathcal{K}_0 satisfying the following inequality as define below:

Definition 1.1. [16] The function $g(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k$ belong to the class \mathcal{K}_o if it satisfies the inequality

$$Re\left(1+z\frac{g^{\prime\prime}(z)}{g^{\prime}(z)}\right)<0, z\in\mathbb{U}.$$
(2)

For more details of concave univalent functions and the types, (see{[1],[2],[3],[4],[6],[7] [19]}). The integral representation of the functions in the class \mathcal{K}_0 was first considered in [15, 16] as stated below:

Theorem 1.1. [15] The function $g(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k$ belong to the class function \mathcal{K}_o if and only if there exists a positive measure $\mu(t)$ and $\int_{-\pi}^{\pi} d\mu(t) = 1$ and $\int_{-\pi}^{\pi} e^{-it} d\mu(t) = 0$, such that for $z \in \mathbb{U}$.

$$g'(z) = -\frac{1}{z} exp \int_{-\pi}^{\pi} 2log(1 - e^{it}z)d\mu(t).$$
(3)

[©]Asia Mathematika, DOI: 10.5281/zenodo.12967540

^{*}Correspondence: yusufaa@funaab.edu.ng

Theorem 1.2. [16] The function $g = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k$ be belong to the class \mathcal{K}_o if there exists a function

$$\varphi: \mathbb{U} \to \mathbb{U}, with\varphi(0) = 0 \tag{4}$$

holomorphic in $\mathbb U$, such that for $z\in \mathbb U$

$$g'(z) = -\frac{1}{z} exp \int_{-\pi}^{\pi} 2log(1 - e^{it}z)d\mu(t).$$
(5)

Conversely, for any holomorphic function $\varphi : \mathbb{U} \to \mathbb{U}$, with $\varphi(0) = 0$, there exists a function $g \in \mathcal{K}_o$.

In [13, 14, 16], the inequality (2) was shown to be the necessary and sufficient condition of the concave meromorphic function of the form (1) and also deduced the coefficient inequality

$$|a_1|^2 + 3|a_2| \le 1 \tag{6}$$

by applying an invariant form of Schwarz's lemma involving with Schwarzian derivative and in [4], Al-Kaseasbeh, estimated a_k for $k = 2, 3, \cdots$ for the function g(z) satisfying inequality (2).

Using the Salagean differential operator denoted as \mathcal{D}^n is defined as $\mathcal{D}^0 g(z) = g(z)$, $\mathcal{D}^1 g(z) = zg'(z)$, $\mathcal{D}^n g(z) = D(D^{n-1}g(z)), \{n \in \mathbb{N} \cup \{0\}\}$ and its integral operator define as $\mathcal{I}^0 g(z) = g(z), \ \mathcal{I}^1 g(z) = \int_0^z \frac{g(t)}{t} dt, \ \mathcal{I}^n g(z) = \mathcal{I}(\mathcal{I}^{n-1}g(z)), \{n \in \mathbb{N} \cup \{0\}\}, \text{ both appeared in [17].}$

The new generalized class of concave meromorphic functions is define as follows:

Definition 1.2. The function $g: \mathbb{U} \to \mathbb{E}$, $g(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k$ belong to the class of concave meromorphic univalent function of order ζ , denoted as $\mathcal{K}_0^n(\zeta)$, for $n \in \mathbb{N}$ and $0 \leq \zeta < 1$, if and only if it satisfies the inequality

$$Re\left(\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^{n}g(z)}\right) < -\zeta, z \in \mathbb{U}.$$
(7)

Similarly, the class $\mathcal{K}_0^n(\zeta)$ can be written as

$$-Re\left(\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^{n}g(z)}\right) > \zeta, z \in \mathbb{U}.$$
(8)

Our focus in this work is to study the concave meromorphic function using the Salagean derivative denoted by $\mathcal{K}_0^n(\zeta)$ and establish some of it geometric properties.

2. Preliminary Lemmas

Lemma 2.1. [5] Let \mathcal{P} be holomorphic in \mathbb{U} with $\mathcal{P}(0) = 1$ and suppose that

$$Re\left(rac{z\mathcal{P}'(z)}{\mathcal{P}(z)}
ight) > rac{3\zeta-1}{2\zeta}, \in \mathbb{U}.$$

Then $Re\mathcal{P}(z) > 2^{1-1/\zeta}$, $1/2 \leq \zeta < 1$, $z \in \mathbb{U}$ and the constant $2^{1-1/\zeta}$ is the best possible.

Lemma 2.2. [9, 11] Let $\mathcal{P}(z)$ be analytic in \mathbb{U} , $\mathcal{P}(0) = 1$ and suppose that

$$Re\left\{\mathcal{P}(z) - \frac{z\mathcal{P}'(z)}{\mathcal{P}(z)}\right\} > \zeta, (z \in \mathbb{U}, 0 \le \zeta < 1).$$

Then $Re\mathcal{P}(z) > \zeta$ in \mathbb{U} .

Lemma 2.3. [10] Let $\mathcal{P}(z) = 1 + c_1 z + c_2 z^2 + \cdots$, be analytic in \mathbb{U} and $\{\zeta : 0 \leq \zeta < 1\}$ be a positive real number. Suppose that $\{r : 0 < r < 1\}$, such that

$$\min_{|z| \le r} \operatorname{Re}\{\mathcal{P}(z)\} = \min_{|z| \le r} |\mathcal{P}(z)|.$$
(9)

$$Re\frac{z\mathcal{P}'(z)}{\mathcal{P}(z)} > \zeta - 1, z \in \mathbb{U},$$
(10)

 $\begin{array}{l} \mbox{for } 0 < \zeta \leq 1/2 \,, \\ \mbox{and} \end{array}$

$$Re\frac{z\mathcal{P}'(z)}{\mathcal{P}(z)} > \zeta/2 - 1, z \in U.$$
(11)

 $\begin{array}{l} \mbox{for } 1/2 < \zeta < 1 \,, \\ \mbox{Then} \end{array}$

$$Re\{\mathcal{P}(z)\} > \zeta, z \in U. \tag{12}$$

Lemma 2.4. [18] Let $\mathcal{P}(z)$ be regular and satisfy $\operatorname{Re}\mathcal{P}(z) > \zeta$, $0 \leq \zeta < 1$ in |z| < 1 and let $\mathcal{P}(0) = 1$. Then we have

$$\mathcal{P}(z) = \frac{1 + (2\zeta - 1)z\phi(z)}{1 + z\phi(z)}$$
(13)

where $\phi(z)$ is any regular function in |z| < 1, satisfying $|\phi(z)| < 1$ in |z| < 1 and any function $\mathcal{P}(z)$ given by the above formula is regular and satisfies $Re\mathcal{P}(z) > \zeta$ in |z| < 1.

Lemma 2.5. [8, 15] Let w(z) be non-constant regular in $\{z : |z| < 1\}$ w(0) = 0. If w(z) attains its maximum value on the circle |z| = r < 1 at z_0 , we have $z_0 w'(z_0) = kw(z_0)$, where k is a real number, $k \ge 1$.

3. Main Results

Theorem 3.1. For $n \in \mathbb{N}$ and $0 \leq \zeta < 1$. Then $\mathcal{K}_0^{n+1}(\zeta) \subset \mathcal{K}_0^n(\zeta)$.

Proof. The function $g(z) \in \mathcal{K}_0^n(\zeta)$, if $\mathcal{P} \in \mathcal{P}(\zeta)$ so that

$$-\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} = \mathcal{P}(z).$$
(14)

By differentiating (14), we obtain

$$\frac{(\mathcal{D}^{n}g(z))'\mathcal{D}^{n+1}g(z)}{(\mathcal{D}^{n}g(z))^{2}} - \frac{(\mathcal{D}^{n+1}g(z))'}{\mathcal{D}^{n}g(z)} = \mathcal{P}'(z)$$
(15)

$$\frac{z(\mathcal{D}^{n}g(z))'\mathcal{D}^{n+1}g(z)}{(\mathcal{D}^{n}g(z))^{2}} - \frac{z(\mathcal{D}^{n+1}g(z))'}{\mathcal{D}^{n}g(z)} = z\mathcal{P}'(z).$$
(16)

Divide through by $\mathcal{P}(z)$

$$\frac{z(\mathcal{D}^{n+1}g(z))'}{\mathcal{D}^{n+1}g(z)} - \frac{z(\mathcal{D}^{n}g(z))'}{\mathcal{D}^{n}g(z)} = \frac{z\mathcal{P}'(z)}{\mathcal{P}(z)}.$$
(17)

By the relation $z(\mathcal{D}^{n+1}g(z))' = \mathcal{D}^{n+2}g(z)$ and $z(\mathcal{D}^ng(z))' = \mathcal{D}^{n+1}g(z)$, then (17) becomes

$$\frac{\mathcal{D}^{n+2}g(z)}{\mathcal{D}^{n+1}g(z)} - \frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^{n}g(z)} = \frac{z\mathcal{P}'(z)}{\mathcal{P}(z)}$$
(18)

which implies that

$$\frac{\mathcal{D}^{n+2}g(z)}{\mathcal{D}^{n+1}g(z)} = \frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} + \frac{z\mathcal{P}'(z)}{\mathcal{P}(z)}.$$
(19)

From (19), we have that

$$\frac{\mathcal{D}^{n+2}g(z)}{\mathcal{D}^{n+1}g(z)} = -\mathcal{P}(z) + \frac{z\mathcal{P}'(z)}{\mathcal{P}(z)}$$
(20)

$$-\frac{\mathcal{D}^{n+2}g(z)}{\mathcal{D}^{n+1}g(z)} = \mathcal{P}(z) - \frac{z\mathcal{P}'(z)}{\mathcal{P}(z)}.$$
(21)

Since

$$Re\left\{\mathcal{P}(z) - \frac{z\mathcal{P}'(z)}{\mathcal{P}(z)}\right\} > \zeta$$

by Lemma 2.2. Then $-Re\left(\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)}\right) > \zeta$ and we have the inclusion.

Theorem 3.2. If $g(z) \in \mathcal{K}_0^n(\zeta)$, and satisfies

$$Re\left(\frac{\mathcal{D}^{n+2}g(z)}{\mathcal{D}^{n+1}g(z)} - \frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^{n}g(z)}\right) > \frac{\zeta - 1}{2\zeta}.$$

Then $-Re(\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)}) > 2^{1-1/\zeta}, \ 1/2 \le \zeta < 1, \ z \in \mathbb{U}.$

Proof. The function $g(z) \in \mathcal{K}_0^n(\zeta)$, if $\mathcal{P} \in \mathcal{P}(\zeta)$, then

$$-\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} = \mathcal{P}(z).$$
(22)

By differentiating (22), we obtain

$$\frac{(\mathcal{D}^{n}g(z))'\mathcal{D}^{n+1}g(z)}{(\mathcal{D}^{n}g(z))^{2}} - \frac{(\mathcal{D}^{n+1}g(z))'}{\mathcal{D}^{n}g(z)} = \mathcal{P}'(z)$$
(23)

$$\frac{z(\mathcal{D}^{n}g(z))'\mathcal{D}^{n+1}g(z)}{(\mathcal{D}^{n}g(z))^{2}} - \frac{z(\mathcal{D}^{n+1}g(z))'}{\mathcal{D}^{n}g(z)} = z\mathcal{P}'(z)$$
(24)

77

$$\frac{z(\mathcal{D}^{n+1}g(z))'}{\mathcal{D}^{n+1}g(z)} - \frac{z(\mathcal{D}^{n}g(z))'}{\mathcal{D}^{n}g(z)} = \frac{z\mathcal{P}'(z)}{\mathcal{P}(z)}.$$
(25)

By the fact that $z(\mathcal{D}^{n+1}g(z))' = \mathcal{D}^{n+2}g(z)$ and $z(\mathcal{D}^ng(z))' = \mathcal{D}^{n+1}g(z)$, then (25) becomes

$$\frac{\mathcal{D}^{n+2}g(z)}{\mathcal{D}^{n+1}g(z)} - \frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^{n}g(z)} = \frac{z\mathcal{P}'(z)}{\mathcal{P}(z)}.$$
(26)

By the condition of the theorem,

$$Re\left(1+\frac{z\mathcal{P}'(z)}{\mathcal{P}(z)}\right) = Re\left(\frac{\mathcal{D}^{n+2}g(z)}{\mathcal{D}^{n+1}g(z)} - \frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^{n}g(z)} + 1\right) > \frac{3\zeta - 1}{2\zeta}$$
(27)

which is equivalent to

$$Re\left(\frac{\mathcal{D}^{n+2}g(z)}{\mathcal{D}^{n+1}g(z)} - \frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^{n}g(z)}\right) > \frac{\zeta - 1}{2\zeta}.$$
(28)

Thus by Lemma 2.1, $Re\mathcal{P}(z) > 2^{1/\zeta - 1}$, $1/2 \le \zeta < 1$, which concludes the result.

Theorem 3.3. Let $f \in \mathcal{K}_0^n(\zeta)$, $n \in \mathbb{N}$ and $0 \leq \zeta < 1$. Then

$$g(z) = \mathcal{I}_n \left\{ \frac{1}{z} \exp\left\{ (2 - 2\zeta) \int_0^z \frac{\phi(t)}{1 + t\phi(t)} dt \right\} \right\}.$$
(29)

where $\phi(z)$ is regular in |z| < 1 with $|\phi(z)| < 1$.

Proof. Let $g \in \mathcal{K}_0^n(\zeta)$, then by Lemma 2.4

$$\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} = -\frac{1 + (2\zeta - 1)z\phi(z)}{1 + z\phi(z)}.$$
(30)

From the relation $\left. z(\mathcal{D}^ng(z)) \right|' = \mathcal{D}^{n+1}g(z)$, we obtain

$$\frac{z(\mathcal{D}^n g(z))'}{\mathcal{D}^n g(z)} = -\frac{1 + (2\zeta - 1)z\phi(z)}{1 + z\phi(z)}.$$
(31)

$$\frac{z(\mathcal{D}^n g(z))'}{\mathcal{D}^n g(z)} + 1 = \frac{(2 - 2\zeta)z\phi(z)}{1 + z\phi(z)}.$$
(32)

$$\frac{z(\mathcal{D}^n g(z))'}{\mathcal{D}^n g(z)} + \frac{1}{z} = \frac{(2-2\zeta)\phi(z)}{1+z\phi(z)}.$$
(33)

We can have that

$$\frac{d}{dz}(\log z\mathcal{D}^n g(z)) = \frac{(2-2\zeta)\phi(z)}{1+z\phi(z)}.$$
(34)

Which gives

$$\mathcal{D}^{n}g(z)) = \frac{1}{z} \exp\left\{ (2 - 2\zeta) \int_{0}^{z} \frac{\phi(t)}{1 + t\phi(t)} \right\}.$$
(35)

Equation (29) can easily be obtained from (35).

78

Corollary 3.1. . If n = 1, then

$$g(z) = \int_0^z \left\{ \frac{1}{s^2} \left\{ \exp\left\{ (2 - 2\zeta) \int_0^s \frac{\phi(t)}{1 + t\phi(t)} dt \right\} \right\} \right\}.$$
 (36)

Corollary 3.2. [1]. If n = 1, $\zeta = 0$, then

$$g(z) = \int_0^z \left\{ \frac{1}{s^2} \left\{ \exp\left\{ \int_0^s \frac{2\phi(t)}{1 + t\phi(t)} dt \right\} \right\} \right\}.$$
 (37)

Theorem 3.4. Let

$$G(z) = \frac{c}{z^{c+1}} \int_0^z t^c g(t) dt.$$
 (38)

If G(z) satisfies the condition

$$Re\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} < \frac{1-\zeta}{2c+2-2\zeta} - \zeta \tag{39}$$

for $n \in \mathbb{N}$, $0 \leq \zeta < 1$ and c > 0. Then $G(z) \in \mathcal{K}_0^n(\zeta)$.

 $\mathit{Proof.}\ \mathrm{Let}$

$$\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} = -\mathcal{P}(z). \tag{40}$$

From (38), we have

$$z^{c+1}G(z) = c \int_0^z t^c g(t) dt$$
(41)

$$(c+1)z^{c}G(z) + z^{c+1}G'(z) = cz^{c}g(z)$$
(42)

$$(c+1)G(z) + zG'(z) = cg(z)$$
(43)

$$(c+1)\mathcal{D}^{n}G(z) + z(\mathcal{D}^{n}G(z))' = c\mathcal{D}^{n}g(z)$$
(44)

$$(c+1)\mathcal{D}^{n+1}G(z) + z(\mathcal{D}^{n+1}G(z))' = c\mathcal{D}^{n+1}g(z)$$
(45)

$$c\mathcal{D}^{n+1}g(z) = -(c+1)[\mathcal{P}(z)\mathcal{D}^n G(z)] - z[\mathcal{P}(z)\mathcal{D}^n G(z)]'$$
(46)

$$c\mathcal{D}^{n+1}g(z) = -(c+1)[\mathcal{P}(z)\mathcal{D}^nG(z)] - z\mathcal{P}'(z)\mathcal{D}^nG(z) - \mathcal{P}(z)z[\mathcal{D}^nG(z)]'$$
(47)

$$c\mathcal{D}^{n+1}g(z) = -(c+1)[\mathcal{P}(z)\mathcal{D}^{n}G(z)] - z\mathcal{P}'(z)\mathcal{D}^{n}G(z) + \mathcal{P}(z)\mathcal{D}^{n+1}G(z)$$
(48)

$$c\mathcal{D}^{n+1}g(z) = -[(c+1)\mathcal{P}(z)\mathcal{D}^n G(z) - z\mathcal{P}'(z) + \mathcal{P}^2(z)]\mathcal{D}^n G(z).$$
(49)

Also

$$c\mathcal{D}^{n}g(z) = (c+1)\mathcal{D}^{n}G(z) + z(\mathcal{D}^{n}G(z))^{'}$$
(50)

$$c\mathcal{D}^n g(z) = (c+1)\mathcal{D}^n G(z) + \mathcal{D}^{n+1} G(z)$$
(51)

$$c\mathcal{D}^n g(z) = [(c+1) - \mathcal{P}(z)]D^n G(z)$$
(52)

$$\frac{c\mathcal{D}^{n+1}g(z)}{c\mathcal{D}^{n}g(z)} = \frac{-[(c+1)\mathcal{P}(z) - z\mathcal{P}'(z) + \mathcal{P}^{2}(z)]\mathcal{D}^{n}G(z)}{[(c+1) - \mathcal{P}(z)]\mathcal{D}^{n}G(z)}$$
(53)

$$\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} = \frac{-[(c+1) - \mathcal{P}(z)]\mathcal{P}(z) - z\mathcal{P}'(z)}{[(c+1) - \mathcal{P}(z)]}$$
(54)

$$\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} = -\mathcal{P}(z) - \frac{z\mathcal{P}'(z)}{\left[(c+1) - \mathcal{P}(z)\right]}.$$
(55)

From Lemma (2.4), let

$$p(z) = \frac{1 + (2\zeta - 1)w(z)}{1 + w(z)}$$
(56)

where $w(z) = z\phi(z)$, w(0) = 0 and |w(z)| < 1,

$$\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} = -\left\{\frac{1 + (2\zeta - 1)w(z)}{1 + w(z)} + \frac{(2\zeta - 2)zw'(z)}{(1 + w(z))[c + (2 + c - 2\zeta)]w(z)}\right\}.$$
(57)

By Lemma 2.5, there exits $k \ge 1$ such that $z_0 w'(z_0) = k w(z_0)$, we obtain

$$\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} = -\left\{\frac{1 + (2\zeta - 1)w(z_0)}{1 + w(z_0)} + \frac{(2\zeta - 2)kw(z_0)}{(1 + w(z_0))[c + (2 + c - 2\zeta)]w(z_0)}\right\}.$$
(58)

So that

$$Re\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^{n}g(z)} \ge \frac{1-\zeta}{2c+2-2\zeta} - \zeta > 0,$$
(59)

which is a contradiction for |w(z)| < 1, then $G(z) \in \mathcal{K}_0^n(\zeta)$.

Corollary 3.3. If n = 1, then

$$Re\left(1+\frac{zg''(z)}{g(z)}\right) < \frac{1-\zeta}{2c+2-2\zeta} - \zeta.$$
(60)

Corollary 3.4. If n = 1, $\zeta = 0$, then

$$Re\left(1+\frac{zg''(z)}{g(z)}\right) < \frac{1}{2+2c}.$$
(61)

Corollary 3.5. [12]. If n = 1, $\zeta = 0$ and c = 1 then

$$Re\left(1+\frac{zg''(z)}{g(z)}\right) < \frac{1}{4}.$$
(62)

Theorem 3.5. For $n \in \mathbb{N}$ and $0 \leq \zeta < 1$. The class $\mathcal{K}_0^n(\zeta)$, is a convex family of concave meromorphic univalent functions.

Proof. Let g(z) and k(z) be in the class $\mathcal{K}_0^n(\zeta)$. For $t \in (0,1)$, it suffices to show that the function h(z) = (1-t)g(z) + tk(z) is in the class $\mathcal{K}_0^n(\zeta)$.

$$-Re\frac{\mathcal{D}^{n+1}h(z)}{\mathcal{D}^nh(z)} = \frac{(1-t)\left[\frac{(-1)^{n+1}}{z} + \sum_{k=1}^{\infty} k^{n+1}a_k z^k\right] + t\left[\frac{(-1)^{n+1}}{z} + \sum_{k=1}^{\infty} k^{n+1}b_k z^k\right]}{(1-t)\left[\frac{(-1)^n}{z} + \sum_{k=1}^{\infty} k^n a_k z^k\right] + t\left[\frac{(-1)^n}{z} + \sum_{k=1}^{\infty} k^n b_k z^k\right]}.$$
(63)

$$-Re\frac{\mathcal{D}^{n+1}h(z)}{\mathcal{D}^nh(z)} = \frac{\frac{(-1)^{n+1}}{z} + \sum_{k=1}^{\infty} k^{n+1}[(1-t)a_k + tb_k z^k]z^k}{\frac{(-1)^n}{z} + \sum_{k=1}^{\infty} k^n[(1-t)a_k + tb_k]z^k}.$$
(64)

Since $g(z), k(z) \in \mathcal{K}_0^n(\zeta)$. This implies that $h(z) = \frac{1}{z} + \sum_{k=1}^{\infty} [(1-t)a_k + tb_k] z^k \in \mathcal{K}_0^n(\zeta)$. Therefore

$$-Re\frac{\mathcal{D}^{n+1}h(z)}{\mathcal{D}^nh(z)} > \zeta.$$
(65)

Theorem 3.6. Let $n \in \mathbb{N}$, $0 \leq \zeta < 1$. Suppose that g(z) satisfies the condition

$$\min_{|z| \le r} Re\left\{-\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)}\right\} = \min_{|z| \le r} \left|-\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)}\right|,\tag{66}$$

for arbitrary (0 < r < 1)

$$Re\frac{\mathcal{D}^{n+2}g(z)}{\mathcal{D}^{n+1}g(z)} < Re\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^{n}g(z)} - \zeta + 1,$$
(67)

for $0 < \zeta \leq 1/2$. and

$$Re\frac{\mathcal{D}^{n+2}f(z)}{\mathcal{D}^{n+1}f(z)} < Re\frac{\mathcal{D}^{n+1}f(z)}{\mathcal{D}^{n}f(z)} - \frac{\zeta}{2} + 1, z \in U,$$
(68)

for $1/2 < \zeta < 1$. Then $f(z) \in \mathcal{K}_0^n(\zeta)$.

Proof. Let

$$-\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)} = \mathcal{P}(z) \tag{69}$$

then

$$\frac{z\mathcal{P}'(z)}{\mathcal{P}(z)} = -\frac{\mathcal{D}^{n+2}f(z)}{\mathcal{D}^{n+1}g(z)} + \frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^{n}g(z)}$$
(70)

By Lemma 2.3, condition (67) and (68), we have that

$$-Re\left(\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^n g(z)}\right) > \zeta.$$
(71)

Theorem 3.7. Let $n \in \mathbb{N}$ and g(z) be of the form (1). For $0 \leq \zeta < 1$, then

$$\sum_{k=1}^{\infty} k^n (\zeta + k) |a_k| \le 1 - \zeta.$$
(72)

if and only $f \in \mathcal{K}^n(\zeta)$.

Proof. Suppose that the condition (72) holds for $(0 \le \zeta < 1)$, it is sufficient to show that $|1 - \zeta + \alpha| \le |1 + \beta - \alpha|$ where $Re(-\alpha) \ge \zeta$ which implies that

$$\left|1-\zeta+\left(-\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^ng(z)}\right)\right| \le \left|1+\zeta-\left(-\frac{\mathcal{D}^{n+1}g(z)}{\mathcal{D}^ng(z)}\right)\right|.$$

From the relation that $z(\mathcal{D}^n g(z))' = \mathcal{D}^{n+1}g(z)$, then

$$\begin{split} \left| 1 - \zeta + \left(-\frac{z(\mathcal{D}^{n}g(z))^{'}}{\mathcal{D}^{n}g(z)} \right) \right| &\leq \left| 1 + \zeta - \left(-\frac{z(\mathcal{D}^{n}g(z))^{'}}{\mathcal{D}^{n}g(z)} \right) \right| \\ &\left| 1 - \zeta + \left(-\frac{z(\mathcal{D}^{n}g(z))^{'}}{\mathcal{D}^{n}g(z)} \right) \right| - \left| 1 + \zeta - \left(-\frac{z(\mathcal{D}^{n}g(z))^{'}}{\mathcal{D}^{n}g(z)} \right) \right| \leq 0 \\ &\left| (1 - \zeta)\mathcal{D}^{n}g(z) + \left(-z(\mathcal{D}^{n}g(z))^{'} \right) \right| - \left| (1 + \zeta)\mathcal{D}^{n}g(z) - \left(-z(\mathcal{D}^{n}f(z))^{'} \right| \leq 0 \\ &= \left| (1 - \zeta) \left(\frac{(-1)^{n}}{z} + \sum_{k=1}^{\infty} k^{n}a_{k}z^{k} \right) + \frac{(-1)^{n}}{z} - \sum_{k=1}^{\infty} k^{n+1}a_{k}z^{k} \right| \\ &- \left| (1 + \zeta) \left(\frac{(-1)^{n}}{z} + \sum_{k=1}^{\infty} k^{n}a_{k}z^{k} \right) - \frac{(-1)^{n}}{z} + \sum_{k=1}^{\infty} k^{n+1}a_{k}z^{k} \right| \\ &\leq (2 - \zeta)| - 1|^{n} + \sum_{k=1}^{\infty} [(1 - \zeta)k^{n} - k^{n+1}]|a_{k}||z|^{k+1} - \zeta| - 1|^{n} + \sum_{k=1}^{\infty} [(1 + \zeta)k^{n} + k^{n+1}]|a_{k}||z|^{k+1} \end{split}$$

$$= 2[(1-\zeta) - \sum_{k=1}^{\infty} (k^n(\zeta+k))]|a_k| \le 0.$$

From the last inequality, we obtain the condition (72) of the theorem.

Corollary 3.6. Let $g \in \mathcal{K}_0^n(\zeta)$, then

$$|a_k| \le \frac{1-\zeta}{k^n(\zeta+k)}, k \ge 1.$$
(73)

Equality is obtained for

$$f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} \frac{1-\zeta}{k^n(\zeta+k)}.$$
(74)

82

Theorem 3.8. Let the function of the form (1) be in $\mathcal{K}_0^n(\zeta)$, then for 0 < |z| = r < 1,

$$\frac{1}{r} - \frac{1-\zeta}{k^n(\zeta+k)} r \le |f(z)| \le \frac{1}{r} + \frac{1-\zeta}{k^n(\zeta+k)} r$$
(75)

and

$$\frac{1}{r^2} - \frac{k(1-\zeta)}{k^n(\zeta+k)} r^{k-1} \le |f'(z)| \le \frac{1}{r^2} + \frac{k(1-\zeta)}{k^n(\zeta+k)} r^{k-1}.$$
(76)

Equality in (75) and (76) are obtained for the function

$$g(z) = \frac{1}{z} + \sum_{k=1}^{\infty} \frac{1-\zeta}{k^n(\zeta+k)}.$$
(77)

Proof. Since $f \in \mathcal{K}_0^n(\zeta)$, then from (72), we have that

$$\sum_{k=1}^{\infty} |a_k| \le \frac{1-\zeta}{k^n(\zeta+k)}.$$
(78)

For 0 < |z| = r < 1, then

$$|f(z)| \le \left|\frac{1}{z}\right| + \left|\sum_{k=1}^{\infty} a_k z^k\right|$$
$$\le \frac{1}{r} + r \sum_{k=1}^{\infty} |a_k|$$
$$\le \frac{1}{r} + \frac{1-\zeta}{k^n(\zeta+k)}r$$

and

$$|f(z)| \ge \left|\frac{1}{z}\right| - \left|\sum_{k=1}^{\infty} a_k z^k\right|$$
$$\ge \frac{1}{r} - r \sum_{k=1}^{\infty} |a_k|$$
$$\ge \frac{1}{r} - \frac{1-\zeta}{k^n(\zeta+k)}r.$$

Also

$$\begin{split} |f'(z)| &\leq \frac{1}{|z|^2} + \left| \sum_{k=1}^{\infty} k a_k z^{k-1} \right| \\ |f'(z)| &\leq \frac{1}{r^2} + r^{k-1} \sum_{k=1}^{\infty} k |a_k| \\ |f'(z)| &\leq \frac{1}{r^2} + \frac{k(1-\zeta)}{k^n(\zeta+k)} r^{k-1} \end{split}$$

and

$$\begin{split} |f'(z)| &\geq \frac{1}{|z|^2} - \left| \sum_{k=1}^{\infty} k a_k z^{k-1} \right| \\ |f'(z)| &\geq \frac{1}{r^2} - r^{k-1} \sum_{k=1}^{\infty} k |a_k| \\ f'(z)| &\geq \frac{1}{r^2} - \frac{k(1-\zeta)}{k^n(\zeta+k)} r^{k-1}. \end{split}$$

4. Conclusion

In this work we determine the properties which includes inclusion, integral representation, closure under an integral operator, sufficient condition, coefficient inequality, growth and distortion.

Acknowledgment

The authors jointly worked on the results, read and approved the final manuscript

References

- Adebayo Y. A. and Babalola K. O. Integral representation of generalized classes of Concave Univalent functions, Acta Universitatis Apulensis 2020; 62: 71-79.
- [2] Avkhadiev F. G. and Wirths K. J. Concave schlicht functions with bounded opening angle at infinity, Lobachevskii Journal of Mathematics, 2005; 17: 3-10.
- [3] Avkhadiev F.G. and Wirths K. J. Convex holes produce lower bounds for coefficients, Complex Variables 2002; 47: 553-563.
- [4] Al-Kaseasbeh M. and Darus M. On Concave Meromorphic Mappings, Journal of Advanced Mathematics and Applications 2017; 6: 1-5.
- [5] Babalola K. O. On λ -Pseudo-Starlike functions, Journal of Classical Analysis 2013; **3(2)**: 137-147.
- [6] Bajpai S. K. A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures Appl. 1977; 22: 295-297.
- [7] Chuaqui M. Duren P. and Osgood B. Concave conformal mappings and pre- vertices of Schwarz-Christoffel mappings, Proceedings of the American Mathematical Society 2012; 140(10): 3495-3505.
- [8] Duren P. L. Univalent function, New York Springer-Verlag Inc, (1983).
- P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade On a Briot-Bouquet differential subordination, Rev. Roum. Math. Pure Appl. 1984; 29(7): 567-573.
- [10] Jing W. and Lifeng G. Sufficient conditions for subclasses of Certain meromorphic functions, International Journal of Engineering and Innovative Technology 2013; 3(6): 1-3.
- [11] Jack L. S. Functions of starlike and convex of order α , J.London Math. Soc. 1971; 2(3): 469-474.
- [12] Koebe P. Uber die uniformisierung beliebiger analytischer kurven. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse 1907; 2: 191-210.
- [13] Livingston A. E. Convex meromorphic mappings, Ann. Polo. Math. 1994; 59: 275-291.
- [14] Miller J. Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 1980; 80: 607-613.

- [15] Pfaltzgra J. & Pinchuk B. A variational method for classes of meromorphic functions, J. AnalyseMath. 1971; 24: 101-150.
- [16] Rintaro O. A Study on Concave Functions in Geometric Function Theory, Doctoral Thesis, Tohoku University, Japan,(2014).
- [17] Salagean G. S. Subclasses of univalent functions. Lecture notes in Mathematics, Springer-Verlag, Berlin, Heidelberg and New York 1983; 362-372.
- [18] Padmanabhan K. S. On certain classes of meromorphic functions in the unit circle, Math. Zeitschr 1965; 89: 98-107.
- [19] Yusuf Abdulahi and Maslina Darus. On certain Class of Concave Meromorphic functions defined by inverse operator, Acta Universitatis Apulensis 2019; 58: 91-102.