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Abstract: In this work, we introduce a generalized class of concave meromorphic functions denoted as Kn
0 (ζ) defined

by Salagean differential operator Dn , which is an operator defined on the concave meromorphic function g(z) , Dng(z) =

D(Dn−1g(z)), {n ∈ N ∪ {0}} , and study some of the properties namely; inclusion, integral representation, closure under

an integral operator, sufficient condition, coefficient inequality, growth and distortion of this class.
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1. Introduction

Let g be define as

g(z) =
1

z
+

∞∑
k=1

akz
k. (1)

meromorphic function with a simple pole at the origin, the unit disk be denoted by {U = |z| < 1} and concave

domain which is the exterior of a closed convex domain be denoted by E . We say the function g of the form

(1), is concave if it maps the U to E , denoted by K0 satisfying the following inequality as define below:

Definition 1.1. [16] The function g(z) = 1
z +

∑∞
k=1 akz

k belong to the class Ko if it satisfies the inequality

Re

(
1 + z

g
′′
(z)

g′(z)

)
< 0, z ∈ U. (2)

For more details of concave univalent functions and the types, (see{[1],[2],[3],[4],[6],[7] [19]}).
The integral representation of the functions in the class K0 was first considered in [15, 16] as stated below:

Theorem 1.1. [15] The function g(z) = 1
z +

∑∞
k=1 akz

k belong to the class function Ko if and only if there

exists a positive measure µ(t) and
∫ π

−π
dµ(t) = 1 and

∫ π

−π
e−itdµ(t) = 0 , such that for z ∈ U .

g
′
(z) = −1

z
exp

∫ π

−π

2log(1− eitz)dµ(t). (3)
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Theorem 1.2. [16] The function g = 1
z +

∑∞
k=1 akz

k be belong to the class Ko if there exists a function

φ : U → U, withφ(0) = 0 (4)

holomorphic in U , such that for z ∈ U

g
′
(z) = −1

z
exp

∫ π

−π

2log(1− eitz)dµ(t). (5)

Conversely, for any holomorphic function φ : U → U , with φ(0) = 0 , there exists a function g ∈ Ko.

In [13, 14, 16], the inequality (2) was shown to be the necessary and sufficient condition of the concave

meromorphic function of the form (1) and also deduced the coefficient inequality

|a1|2 + 3|a2| ≤ 1 (6)

by applying an invariant form of Schwarz’s lemma involving with Schwarzian derivative and in [4], Al-Kaseasbeh,

estimated ak for k = 2, 3, · · · for the function g(z) satisfying inequality (2).

Using the Salagean differential operator denoted as Dn is defined as D0g(z) = g(z), D1g(z) = zg
′
(z),

Dng(z) = D(Dn−1g(z)), {n ∈ N ∪ {0}} and its integral operator define as I0g(z) = g(z), I1g(z) =
∫ z

0
g(t)
t dt ,

Ing(z) = I(In−1g(z)), {n ∈ N ∪ {0}} , both appeared in [17].

The new generalized class of concave meromorphic functions is define as follows:

Definition 1.2. The function g : U → E , g(z) = 1
z +

∑∞
k=1 akz

k belong to the class of concave meromorphic

univalent function of order ζ , denoted as Kn
0 (ζ), for n ∈ N and 0 ≤ ζ < 1, if and only if it satisfies the

inequality

Re

(
Dn+1g(z)

Dng(z)

)
< −ζ, z ∈ U. (7)

Similarly, the class Kn
0 (ζ) can be written as

−Re

(
Dn+1g(z)

Dng(z)

)
> ζ, z ∈ U. (8)

Our focus in this work is to study the concave meromorphic function using the Salagean derivative denoted by

Kn
0 (ζ) and establish some of it geometric properties.

2. Preliminary Lemmas

Lemma 2.1. [5] Let P be holomorphic in U with P(0) = 1 and suppose that

Re

(
zP ′

(z)

P(z)

)
>

3ζ − 1

2ζ
,∈ U.

Then ReP(z) > 21−1/ζ , 1/2 ≤ ζ < 1 , z ∈ U and the constant 21−1/ζ is the best possible.
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Lemma 2.2. [9, 11] Let P(z) be analytic in U , P(0) = 1 and suppose that

Re

{
P(z)− zP ′

(z)

P(z)

}
> ζ, (z ∈ U, 0 ≤ ζ < 1).

Then ReP(z) > ζ in U .

Lemma 2.3. [10] Let P(z) = 1 + c1z + c2z
2 + · · · , be analytic in U and {ζ : 0 ≤ ζ < 1} be a positive real

number. Suppose that {r : 0 < r < 1} , such that

min
|z|≤r

Re{P(z)} = min
|z|≤r

|P(z)|. (9)

Re
zP ′

(z)

P(z)
> ζ − 1, z ∈ U, (10)

for 0 < ζ ≤ 1/2 ,

and

Re
zP ′

(z)

P(z)
> ζ/2− 1, z ∈ U. (11)

for 1/2 < ζ < 1 ,

Then
Re{P(z)} > ζ, z ∈ U. (12)

Lemma 2.4. [18] Let P(z) be regular and satisfy ReP(z) > ζ , 0 ≤ ζ < 1 in |z| < 1 and let P(0) = 1 . Then

we have

P(z) =
1 + (2ζ − 1)zϕ(z)

1 + zϕ(z)
(13)

where ϕ(z) is any regular function in |z| < 1 , satisfying |ϕ(z)| < 1 in |z| < 1 and any function P(z) given by

the above formula is regular and satisfies ReP(z) > ζ in |z| < 1.

Lemma 2.5. [8, 15] Let w(z) be non-constant regular in { z : |z| < 1} w(0) = 0 . If w(z) attains its maximum

value on the circle |z| = r < 1 at z0 , we have z0w
′
(z0) = kw(z0) , where k is a real number , k ≥ 1.

3. Main Results

Theorem 3.1. For n ∈ N and 0 ≤ ζ < 1 . Then Kn+1
0 (ζ) ⊂ Kn

0 (ζ).

Proof. The function g(z) ∈ Kn
0 (ζ), if P ∈ P(ζ) so that

−Dn+1g(z)

Dng(z)
= P(z). (14)

By differentiating (14), we obtain

(Dng(z))
′Dn+1g(z)

(Dng(z))2
− (Dn+1g(z))

′

Dng(z)
= P

′
(z) (15)
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z(Dng(z))
′Dn+1g(z)

(Dng(z))2
− z(Dn+1g(z))

′

Dng(z)
= zP

′
(z). (16)

Divide through by P(z)

z(Dn+1g(z))
′

Dn+1g(z)
− z(Dng(z))

′

Dng(z)
=

zP ′
(z)

P(z)
. (17)

By the relation z(Dn+1g(z))
′
= Dn+2g(z) and z(Dng(z))

′
= Dn+1g(z), then (17) becomes

Dn+2g(z)

Dn+1g(z)
− Dn+1g(z)

Dng(z)
=

zP ′
(z)

P(z)
(18)

which implies that

Dn+2g(z)

Dn+1g(z)
=

Dn+1g(z)

Dng(z)
+

zP ′
(z)

P(z)
. (19)

From (19), we have that

Dn+2g(z)

Dn+1g(z)
= −P(z) +

zP ′
(z)

P(z)
(20)

−Dn+2g(z)

Dn+1g(z)
= P(z)− zP ′

(z)

P(z)
. (21)

Since

Re

{
P(z)− zP ′

(z)

P(z)

}
> ζ

by Lemma 2.2. Then −Re
(

Dn+1g(z)
Dng(z)

)
> ζ and we have the inclusion.

Theorem 3.2. If g(z) ∈ Kn
0 (ζ) , and satisfies

Re

(
Dn+2g(z)

Dn+1g(z)
− Dn+1g(z)

Dng(z)

)
>

ζ − 1

2ζ
.

Then −Re(D
n+1g(z)
Dng(z) ) > 21−1/ζ , 1/2 ≤ ζ < 1 , z ∈ U .

Proof. The function g(z) ∈ Kn
0 (ζ), if P ∈ P(ζ), then

−Dn+1g(z)

Dng(z)
= P(z). (22)

By differentiating (22), we obtain

(Dng(z))
′Dn+1g(z)

(Dng(z))2
− (Dn+1g(z))

′

Dng(z)
= P

′
(z) (23)

z(Dng(z))
′Dn+1g(z)

(Dng(z))2
− z(Dn+1g(z))

′

Dng(z)
= zP

′
(z) (24)

77



A. A. YUSUF and M. DARUS

z(Dn+1g(z))
′

Dn+1g(z)
− z(Dng(z))

′

Dng(z)
=

zP ′
(z)

P(z)
. (25)

By the fact that z(Dn+1g(z))
′
= Dn+2g(z) and z(Dng(z))

′
= Dn+1g(z), then (25) becomes

Dn+2g(z)

Dn+1g(z)
− Dn+1g(z)

Dng(z)
=

zP ′
(z)

P(z)
. (26)

By the condition of the theorem,

Re

(
1 +

zP ′
(z)

P(z)

)
= Re

(
Dn+2g(z)

Dn+1g(z)
− Dn+1g(z)

Dng(z)
+ 1

)
>

3ζ − 1

2ζ
(27)

which is equivalent to

Re

(
Dn+2g(z)

Dn+1g(z)
− Dn+1g(z)

Dng(z)

)
>

ζ − 1

2ζ
. (28)

Thus by Lemma 2.1, ReP(z) > 21/ζ−1 , 1/2 ≤ ζ < 1, which concludes the result.

Theorem 3.3. Let f ∈ Kn
0 (ζ) , n ∈ N and 0 ≤ ζ < 1 . Then

g(z) = In
{
1

z
exp

{
(2− 2ζ)

∫ z

0

ϕ(t)

1 + tϕ(t)
dt

}}
. (29)

where ϕ(z) is regular in |z| < 1 with |ϕ(z)| < 1 .

Proof. Let g ∈ Kn
0 (ζ), then by Lemma 2.4

Dn+1g(z)

Dng(z)
= −1 + (2ζ − 1)zϕ(z)

1 + zϕ(z)
. (30)

From the relation z(Dng(z))
′
= Dn+1g(z), we obtain

z(Dng(z))
′

Dng(z)
= −1 + (2ζ − 1)zϕ(z)

1 + zϕ(z)
. (31)

z(Dng(z))
′

Dng(z)
+ 1 =

(2− 2ζ)zϕ(z)

1 + zϕ(z)
. (32)

z(Dng(z))
′

Dng(z)
+

1

z
=

(2− 2ζ)ϕ(z)

1 + zϕ(z)
. (33)

We can have that

d

dz
(log zDng(z)) =

(2− 2ζ)ϕ(z)

1 + zϕ(z)
. (34)

Which gives

Dng(z)) =
1

z
exp

{
(2− 2ζ)

∫ z

0

ϕ(t)

1 + tϕ(t)

}
. (35)

Equation (29) can easily be obtained from (35).
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Corollary 3.1. . If n = 1 , then

g(z) =

∫ z

0

{
1

s2

{
exp

{
(2− 2ζ)

∫ s

0

ϕ(t)

1 + tϕ(t)
dt

}}}
. (36)

Corollary 3.2. [1]. If n = 1 , ζ = 0 , then

g(z) =

∫ z

0

{
1

s2

{
exp

{∫ s

0

2ϕ(t)

1 + tϕ(t)
dt

}}}
. (37)

Theorem 3.4. Let

G(z) =
c

zc+1

∫ z

0

tcg(t)dt. (38)

If G(z) satisfies the condition

Re
Dn+1g(z)

Dng(z)
<

1− ζ

2c+ 2− 2ζ
− ζ (39)

for n ∈ N , 0 ≤ ζ < 1 and c > 0 . Then G(z) ∈ Kn
0 (ζ) .

Proof. Let

Dn+1g(z)

Dng(z)
= −P(z). (40)

From (38), we have

zc+1G(z) = c

∫ z

0

tcg(t)dt (41)

(c+ 1)zcG(z) + zc+1G
′
(z) = czcg(z) (42)

(c+ 1)G(z) + zG
′
(z) = cg(z) (43)

(c+ 1)DnG(z) + z(DnG(z))
′
= cDng(z) (44)

(c+ 1)Dn+1G(z) + z(Dn+1G(z))
′
= cDn+1g(z) (45)

cDn+1g(z) = −(c+ 1)[P(z)DnG(z)]− z[P(z)DnG(z)]
′

(46)

cDn+1g(z) = −(c+ 1)[P(z)DnG(z)]− zP
′
(z)DnG(z)− P(z)z[DnG(z)]

′
(47)

cDn+1g(z) = −(c+ 1)[P(z)DnG(z)]− zP
′
(z)DnG(z) + P(z)Dn+1G(z) (48)

cDn+1g(z) = −[(c+ 1)P(z)DnG(z)− zP
′
(z) + P2(z)]DnG(z). (49)

Also

cDng(z) = (c+ 1)DnG(z) + z(DnG(z))
′

(50)

cDng(z) = (c+ 1)DnG(z) +Dn+1G(z) (51)

cDng(z) = [(c+ 1)− P(z)]DnG(z) (52)
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cDn+1g(z)

cDng(z)
=

−[(c+ 1)P(z)− zP ′
(z) + P2(z)]DnG(z)

[(c+ 1)− P(z)]DnG(z)
(53)

Dn+1g(z)

Dng(z)
=

−[(c+ 1)− P(z)]P(z)− zP ′
(z)

[(c+ 1)− P(z)]
(54)

Dn+1g(z)

Dng(z)
= −P(z)− zP ′

(z)

[(c+ 1)− P(z)]
. (55)

From Lemma (2.4), let

p(z) =
1 + (2ζ − 1)w(z)

1 + w(z)
(56)

where w(z) = zϕ(z), w(0) = 0 and |w(z)| < 1,

Dn+1g(z)

Dng(z)
= −

{
1 + (2ζ − 1)w(z)

1 + w(z)
+

(2ζ − 2)zw
′
(z)

(1 + w(z))[c+ (2 + c− 2ζ)]w(z)

}
. (57)

By Lemma 2.5, there exits k ≥ 1 such that z0w
′
(z0) = kw(z0), we obtain

Dn+1g(z)

Dng(z)
= −

{
1 + (2ζ − 1)w(z0)

1 + w(z0)
+

(2ζ − 2)kw(z0)

(1 + w(z0))[c+ (2 + c− 2ζ)]w(z0)

}
. (58)

So that

Re
Dn+1g(z)

Dng(z)
≥ 1− ζ

2c+ 2− 2ζ
− ζ > 0, (59)

which is a contradiction for |w(z)| < 1, then G(z) ∈ Kn
0 (ζ).

Corollary 3.3. If n = 1 , then

Re

(
1 +

zg
′′
(z)

g(z)

)
<

1− ζ

2c+ 2− 2ζ
− ζ. (60)

Corollary 3.4. If n = 1 , ζ = 0 , then

Re

(
1 +

zg
′′
(z)

g(z)

)
<

1

2 + 2c
. (61)

Corollary 3.5. [12]. If n = 1 , ζ = 0 and c = 1 then

Re

(
1 +

zg
′′
(z)

g(z)

)
<

1

4
. (62)

Theorem 3.5. For n ∈ N and 0 ≤ ζ < 1 . The class Kn
0 (ζ) , is a convex family of concave meromorphic

univalent functions.
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Proof. Let g(z) and k(z) be in the class Kn
0 (ζ). For t ∈ (0, 1), it suffices to show that the function

h(z) = (1− t)g(z) + tk(z) is in the class Kn
0 (ζ).

−Re
Dn+1h(z)

Dnh(z)
=

(1− t)[ (−1)n+1

z +
∑∞

k=1 k
n+1akz

k] + t[ (−1)n+1

z +
∑∞

k=1 k
n+1bkz

k]

(1− t)[ (−1)n

z +
∑∞

k=1 k
nakzk] + t[ (−1)n

z +
∑∞

k=1 k
nbkzk]

. (63)

−Re
Dn+1h(z)

Dnh(z)
=

(−1)n+1

z +
∑∞

k=1 k
n+1[(1− t)ak + tbkz

k]zk

(−1)n

z +
∑∞

k=1 k
n[(1− t)ak + tbk]zk

. (64)

Since g(z), k(z) ∈ Kn
0 (ζ). This implies that h(z) = 1

z +
∑∞

k=1[(1− t)ak + tbk]z
k ∈ Kn

0 (ζ). Therefore

−Re
Dn+1h(z)

Dnh(z)
> ζ. (65)

Theorem 3.6. Let n ∈ N , 0 ≤ ζ < 1 . Suppose that g(z) satisfies the condition

min
|z|≤r

Re

{
−Dn+1g(z)

Dng(z)

}
= min

|z|≤r

∣∣∣∣−Dn+1g(z)

Dng(z)

∣∣∣∣ , (66)

for arbitrary (0 < r < 1)

Re
Dn+2g(z)

Dn+1g(z)
< Re

Dn+1g(z)

Dng(z)
− ζ + 1, (67)

for 0 < ζ ≤ 1/2.

and

Re
Dn+2f(z)

Dn+1f(z)
< Re

Dn+1f(z)

Dnf(z)
− ζ

2
+ 1, z ∈ U, (68)

for 1/2 < ζ < 1.

Then f(z) ∈ Kn
0 (ζ) .

Proof. Let

−Dn+1g(z)

Dng(z)
= P(z) (69)

then

zP ′
(z)

P(z)
= −Dn+2f(z)

Dn+1g(z)
+

Dn+1g(z)

Dng(z)
(70)

By Lemma 2.3, condition (67) and (68), we have that

−Re

(
Dn+1g(z)

Dng(z)

)
> ζ. (71)
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Theorem 3.7. Let n ∈ N and g(z) be of the form (1). For 0 ≤ ζ < 1 , then

∞∑
k=1

kn(ζ + k)|ak| ≤ 1− ζ. (72)

if and only f ∈ Kn(ζ) .

Proof. Suppose that the condition (72) holds for (0 ≤ ζ < 1), it is sufficient to show that |1−ζ+α| ≤ |1+β−α|
where Re(−α) ≥ ζ which implies that∣∣∣∣1− ζ +

(
−Dn+1g(z)

Dng(z)

)∣∣∣∣ ≤ ∣∣∣∣1 + ζ −
(
−Dn+1g(z)

Dng(z)

)∣∣∣∣ .
From the relation that z(Dng(z))

′
= Dn+1g(z), then∣∣∣∣∣1− ζ +

(
−z(Dng(z))

′

Dng(z)

)∣∣∣∣∣ ≤
∣∣∣∣∣1 + ζ −

(
−z(Dng(z))

′

Dng(z)

)∣∣∣∣∣
∣∣∣∣∣1− ζ +

(
−z(Dng(z))

′

Dng(z)

)∣∣∣∣∣−
∣∣∣∣∣1 + ζ −

(
−z(Dng(z))

′

Dng(z)

)∣∣∣∣∣ ≤ 0

∣∣∣(1− ζ)Dng(z) + (−z(Dng(z))
′
)
∣∣∣− ∣∣∣(1 + ζ)Dng(z)− (−z(Dnf(z))

′
∣∣∣ ≤ 0

=

∣∣∣∣∣(1− ζ)

(
(−1)n

z
+

∞∑
k=1

knakz
k

)
+

(−1)n

z
−

∞∑
k=1

kn+1akz
k

∣∣∣∣∣
−

∣∣∣∣∣(1 + ζ)

(
(−1)n

z
+

∞∑
k=1

knakz
k

)
− (−1)n

z
+

∞∑
k=1

kn+1akz
k

∣∣∣∣∣

≤ (2− ζ)| − 1|n +

∞∑
k=1

[(1− ζ)kn − kn+1]|ak||z|k+1 − ζ| − 1|n +

∞∑
k=1

[(1 + ζ)kn + kn+1]|ak||z|k+1

= 2[(1− ζ)−
∞∑
k=1

(kn(ζ + k))]|ak| ≤ 0.

From the last inequality, we obtain the condition (72) of the theorem.

Corollary 3.6. Let g ∈ Kn
0 (ζ) , then

|ak| ≤
1− ζ

kn(ζ + k)
, k ≥ 1. (73)

Equality is obtained for

f(z) =
1

z
+

∞∑
k=1

1− ζ

kn(ζ + k)
. (74)
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Theorem 3.8. Let the function of the form (1) be in Kn
0 (ζ) , then for 0 < |z| = r < 1 ,

1

r
− 1− ζ

kn(ζ + k)
r ≤ |f(z)| ≤ 1

r
+

1− ζ

kn(ζ + k)
r (75)

and

1

r2
− k(1− ζ)

kn(ζ + k)
rk−1 ≤ |f

′
(z)| ≤ 1

r2
+

k(1− ζ)

kn(ζ + k)
rk−1. (76)

Equality in (75) and (76) are obtained for the function

g(z) =
1

z
+

∞∑
k=1

1− ζ

kn(ζ + k)
. (77)

Proof. Since f ∈ Kn
0 (ζ), then from (72), we have that

∞∑
k=1

|ak| ≤
1− ζ

kn(ζ + k)
. (78)

For 0 < |z| = r < 1, then

|f(z)| ≤
∣∣∣∣1z
∣∣∣∣+
∣∣∣∣∣
∞∑
k=1

akz
k

∣∣∣∣∣
≤ 1

r
+ r

∞∑
k=1

|ak|

≤ 1

r
+

1− ζ

kn(ζ + k)
r

and

|f(z)| ≥
∣∣∣∣1z
∣∣∣∣−
∣∣∣∣∣
∞∑
k=1

akz
k

∣∣∣∣∣
≥ 1

r
− r

∞∑
k=1

|ak|

≥ 1

r
− 1− ζ

kn(ζ + k)
r.

Also

|f
′
(z)| ≤ 1

|z|2
+

∣∣∣∣∣
∞∑
k=1

kakz
k−1

∣∣∣∣∣
|f

′
(z)| ≤ 1

r2
+ rk−1

∞∑
k=1

k|ak|

|f
′
(z)| ≤ 1

r2
+

k(1− ζ)

kn(ζ + k)
rk−1
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and

|f
′
(z)| ≥ 1

|z|2
−

∣∣∣∣∣
∞∑
k=1

kakz
k−1

∣∣∣∣∣
|f

′
(z)| ≥ 1

r2
− rk−1

∞∑
k=1

k|ak|

|f
′
(z)| ≥ 1

r2
− k(1− ζ)

kn(ζ + k)
rk−1.

4. Conclusion

In this work we determine the properties which includes inclusion, integral representation, closure under an

integral operator, sufficient condition, coefficient inequality, growth and distortion.
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