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Abstract: In this study, we describe soft parts, named soft 0-symmetric and soft constant parts, of soft intersection
near-rings and soft union near-rings, and obtain their fundamental features. We explore the relations between the parts of
near-rings and soft parts of soft intersection near-rings and soft union near-rings, and we give some applications of these
parts to soft sets. Additionally, soft intersection (union) product of soft intersection (union) near-ring are introduced

and applied on soft parts of soft intersection near-rings and soft union near-rings, respectively.
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1. Introduction

Soft set theory was introduced by Molodtsov [1] as a way to model vagueness and uncertainty. Since then, work
on the theory has advanced quickly and found a wide range of applications, including the mean of algebraic
structures as in [2-23], as well as the structures and operations of soft sets as in [28-46]. Additionally, the theory
of soft sets keeps growing and diversifying tremendously in the mean of soft decision making, as demonstrated
by the papers listed below [24-27, 47-49, 51].

Sezgin et al. [52] defined a new concept, soft intersection near-ring, by utilizing soft sets and the
intersection operation of sets. This concept combines near-ring theory, set theory, and soft set theory, making
it highly useful for obtaining results in the mean of near-ring structure. They provide several applications of
soft int near-rings to near-ring theory based on the definition. Additionally, Sezgin et al. [53] established a
new concept, soft union near-ring, and provided some applications of soft uni near-rings to near-ring theory by
utilizing soft sets and the intersection operation of sets.

Manikantan et al. [50] introduced the concepts of soft zero-symmetric near-ring, soft constant near-ring,
soft near-field and soft Q- simple near-ring over a near-ring and investigated the properties of these notions
with illustrative example in a different manner. In this paper, we try to convey the concept of 0-symmetric and
constant parts of a near-ring to soft intersection near-rings and soft union near-rings as soft 0-symmetric and
soft constant parts, and derive their basic properties. We give some applications of these soft parts to soft sets
and study relations between the parts of near-rings and soft parts of soft int near-rings and soft union near-rings.
Finally, we define soft int (uni) product of soft intersection (union) near-ring and give the applications of them

on soft parts of soft intersection near-rings and soft union near-rings, respectively. In a near-ring structure,
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0-symmetric and constant parts are of great importance for chracterization of the near-ring; so constructing the

soft O-symmetric part and soft constant part help the soft near-ring theory to improve.

2. Preliminaries
In this section, we recall some basic notions relevant to near-rings and soft sets. By a near-ring, we shall mean

an algebraic system (N, +,.), where

N1) (N,+) forms a group (not necessarily abelian)

N2) (N,.) forms a semi-group and

N3) (a+b)e = ac—+ be for all a,b,c € N (i.e. we study on right near-rings.)

Throughout this paper, N will always denote a right near-ring with zero element 0. The subset {n € N : n0 =
0} of N, is called a zero-symmetric part of N and denoted by Ny and the subset {n € N : n0 =n} of N, is
called a constant part of N and denoted by N.. For all undefined concepts and notions regarding near-rings
and semi-nearring, we refer to [54, 55]. From now on, U refers to an initial universe, E is a set of parameters,
P(U) is the power set of U and A,B,C C E.

Definition 2.1. [1, 48] A soft set {4 over U is a set defined by
€a: E — P(U) such that £4(z) =0 if x ¢ A.
Here, £4 is also called approximate function. A soft set over U can be represented by the set of ordered pairs
§a={(z,8a(x)) s w € E,8a(x) € P(U)}.

It is clear to see that a soft set is a parametrized family of subsets of the set U. It is worth noting that
the sets £4(x) may be arbitrary. Some of them may be empty, some may have nonempty intersection. We refer
to [1, 28, 48] for further details.

Definition 2.2. [48] Let ¢4 and &g be soft sets over U. Then, union of £4 and &g, denoted by £4U€R, is
defined as 40U = €455, where &,455(7) = €a(x) Uép(x) forall z € E.

Intersection of €4 and &p, denoted by £aN&p, is defined as €aNép = famp, where famp(r) =
Ealx)Nép(x) for all z € E.

Definition 2.3. [48] Let £4 and £ be soft sets over U. Then, V -product of £4 and &g, denoted by 4V Ep,
is defined as £4 V&g = avp, where avp(z,y) = Ea(x) UER(y) for all (z,y) € E x E.

A-product of €4 and &g, denoted by &4 A Ep, is defined as €4 A &g = fanp, where anp(z,y) =
Ealx)Nép(y) for all (z,y) € EX E.

Definition 2.4. [29] Let &4 and &g be soft sets over U. Then, restricted union of {4 and g, denoted by
&4 Ug €p, is defined defined as £4 Ug £ = fAURB, where fAURB(.r) = fA(x) U fB(]J) forall z€¢ ANB 7& 0.

Restricted intersection of €4 and £p, denoted by &4 M Ep, is defined as €4 M € = famp, where
CanB(z) =&a(z)Nép(x) forall z € ANB #0.
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Definition 2.5. ([52]) Let N be a near-ring and £y be a soft set over U. Then, £y is called soft int near-ring

over U if
Env(z+y) 2868 () NEn(y)
En(—z) = En(a)
Env(zy) 2 &nv(@) NEN(Y)
for all x,y € N.
From now on, soft int near-ring is designated by SIN.
Proposition 2.1. [52] Let £ be a SIN over U. Then, En(0) D En(x) for all x € N.
Theorem 2.1. [52] If &5 and &y are SIN s over U, then so is En A &pr over U.

Definition 2.6. [52] Let £y, gy be SINs over U. Then, the product of SINs {x and gps is defined as
EN X gu = hnxar, where hywar(z,y) = En(x) X gu(y) for all (z,y) € N x M.

Theorem 2.2. [52] If &5 and gy are SIN s over U, then so is En X gy over U x U
Theorem 2.3. [52] If {n and hy are two SIN s over U, then so is gNﬁhN over U .

Definition 2.7. [53] Let N be a near-ring and &y be a soft set over U. Then, £y is called a soft uni near-ring

over U if it satisfies the following properties:

Env(z+y) SEn(z) UEn(y),
En(—x) = En (),
Env(zy) CE&n(2) UEN(Y)
for all x,y € N.
From now on, soft uni near-ring is designated by SUN and near-ring by NR.
Proposition 2.2. [53] Let {n be a SUN over U. Then, nx(0) C En(z) for all x € N.

Theorem 2.4. [53] If {n and Epp are SUN s over U, then so is En V Ep over U

Theorem 2.5. [53] If {n and hy are two SUN s over U, then so is §NL~JhN over U.

3. Soft parts of soft int near-rings

Now, we define soft zero-symmetric and soft constant parts of SINs.

Definition 3.1. Let £y be a SIN over U and M C N. Let £y be the restricted function of f to M, i.e.
for all x € M &p(x) = En(z). If M is a maximal subset of N such that

For all m € M, &y (m0) = &u(0), then the soft set &y is called the soft zero-symmetric part of £y and
denoted by (Fn)o-.
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Table 1. Addition and Multiplication Tables of N

+ 10 a b ¢ .10 a b c
0]0 a b c 00 O 0 O
ala 0 ¢ b ala a a a
b|lb ¢ 0 a b0 0 b 0
clc b a 0 cla a ¢ a

i) For all m € M, &3 (m0) = &pr(m), then the soft set £ is called the soft constant part of {x and denoted by
(fN)v

Example 3.1. Let the NR (N, +,.) be defined on the Klein’s four group N = {0,a,b,c} as following [54].

T
Y

the universal set. We construct a soft set En over U by
0 0 11 3 3 0 0
so-{[ 1[0 o] [0 8] 15 5])
11 3 3 0 0
SCE(ERINERTIERY)
fN(b)_fN(C)_{{é (1):|7|:g g}}

Then, one can easily show that &y is a SIN over U. Since M = {0,b} is a mazimal subset of N such that
Err(mO0) = &n(0) for all m € M, then (§nx)o = Enr- Similarly, since K = {0,a} is a mazimal subset of N
such that £ (k0) = Ex (k) for all k € K, then (En)e =€k -

Assume that N is the set of parameters and U = {[ Z } | z,y € Z4} , 2 X 2 matrices with Z4 terms, is

If N =Ny or N = N, the soft zero-symmetric part of £y or soft constant part of £, are easily obtained

by following theorem:

Theorem 3.1. Let {n be a SIN over U.
i) If N = Ny, then ({n)o = &N -
it) If N =N, then ({n)e = &N -

Proof. i) If N = Ny, then n0 =0 for all n € N. Hence {n(n0) = {n(0) for all n € N. Therefore (€x)o = &N -
ii) If N = N, then n0 =n for all n € N. Hence &y(n0) = &n(n) for all n € N. Therefore ({n). =&n. O

The converse of Theorem 3.1 doesn’t hold, in general. We have the following example:

Example 3.2. Let the NR (N,+,.) be defined on the Klein’s four group N = {0,a,b,c} as in Table 2.
Assume that N is the set of parameters and U = Zs is the universal set. We construct a soft set En over U
by En(0) =En(a) = Zs, En(b) = En(c) ={0,1,2}. The one can easily show that {n is a SIN over U. Since
En(a0) = &n(a) = En(0), En(00) = En(0) and En(c0) = &n(a) = En(0), then (En)o =&, but a0 #0, ie. N
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Table 2. Addition and Multiplication Tables of N

+ (0 a b ¢ .10 a b c
0]0 a b c 00 O 0 O
ala 0 ¢ b ala a a a
b|lb ¢ 0 a b0 0O b b
clc b a 0 cla a ¢ c

18 not a zero-symmetric NR.
If we define another soft set (n over U by (n(0) = (n(a) = (N (D) = (n(c) = {0,1,2,3}, then (y is a SIN
over U. Since (n(n0) =(n(n) foralln € N, ((n)e=Cn. But b0 =0#b, i.e. N is not a constant NR.

Theorem 3.2. Let N and M be NRs and let {5 and (yy be SIN s over U. Then,

i) (En)o A (Car)o = (§n A Car)o

i) (En)e AN (Cu)e = (€N A Car)e
Proof. i) By Theorem 2.1, {y A Cpp is a SIN over U. Assume that (§n)o = £k and (Car)o = (. Then K
is a maximal subset of N such that &x(x) = &n(x) for all x € K and L is a maximal subset of M such that

Cr(z) = Cu(x) for all x € L. By Definition 2.3, let £x A (r, = tkar, where tgar(z,y) = Ex(x) N (L (y) for all
(x,y) € K x L. Let (k,1) € K x L. Then,

(€x A C)((K,1).(0,0)) = txar(k0,10)
= &k (k0)N (L (l0)
= {x(0)N¢L(0)
= tinr(0,0)
Hence, &x A CL = ()0 A (Car)o = (Ex A Car)o. The rest of the proof can be obtained similarly. O

Theorem 3.3. Let N and M be NRs and let 5 and (pp be SIN s over U. Then,

i) (En)o X (Car)o = (v % Car)o
it) (En)e X (Car)e = (En X Car)e
Proof. i) By Theorem 2.2, &y X (pr is a SIN over U x U. Assume that (§n)o = Ex and (Car)o = (. Then,
K is a maximal subset of N such that £x(x) = £y (x) for all x € K and L is a maximal subset of M such
that ¢r(x) = (p(z) for all x € L. By Definition 2.6, let {x X (1, = txxr, where txxr(x,y) = Ex(x) X (1(y)
for all (z,y) € K x L. Let (k,l) € K x L. Then
(€x x CL)((k,1).(0,0)) = txxr(k0,10)
= &k (k0) x (L(10)
= &k (0) x¢L(0)
= trxr(0,0)

Hence, &k % ¢ = (§n)o X (Car)o = (En X Car)o- The rest of the proof can be obtained similarly. O
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Theorem 3.4. Let {n and (n be SIN s over U. Then,

i) (En)oN(Cn)o = (EnTCN)o
i) (En)eN(Cn)e = (ENTCN)e

Proof. i) By Theorem 2.3, éxNCy is a SIN over U. Assume that (£x)o = €x and (Cy)o = ¢z Then, K is
a maximal subset of N such that x(z) = {n(x) for all x € K and L is a maximal subset of N such that
Cr(x) = Cy(z) for all z € L. By Definition 2.2, let £xN(r = txny, where tp=;(7) = Ex(z) N ¢ (x) for all
x € N. Let x € N. Then,

(ExNCL)(@0) = txmp(20)
= &k (20) N (L (20)
= &k (0)N¢L(0)
= tgaz(0)
Hence, xN¢r = (Ex)oN(Cn)o = (ENNCN)o- The rest of the proof can be obtained similarly. O

Corollary 3.1. Let &y and (n be SIN s over U. Then,

i) (En)o M (Cn)o = (En MCN)o
”) (gN)c m (CN)C = (fN m CN)c

ii)

Proof. The proof is similar to proof of Theorem 3.4, hence omitted. O

4. Soft parts of soft uni near-rings
Now, we define soft zero-symmetric and soft constant parts of SUN's.

Definition 4.1. Let £y be a SUN over U and M C N. Let &y be the restricted function of f to M, i.e.
for all x € M &p(x) =En(x). If M is a maximal subset of N such that

For all m € M, &y (m0) = & (0), then the soft set &ps is called the soft zero-symmetric part of {x and
denoted by (£n)o-

For all m € M, £y/(m0) = &pr(m), then the soft set &y is called the soft constant part of £x and denoted by
(En)e-

Example 4.1. Consider the additive group (Zg,+). Under a multiplication given in the Table 3, N = (Zg,+,.)
is a (right) NR [56].

Let N = Zg be the set of parameters and U = ZT be the universal set. We define a soft set £x over U by

EN(O) = {274}7

EN(I) = EN(5) = {27 4,6,8, 10}7
Env(3) = {2,4,8,10},

§N(2) = £N(4) = {2747 6, 10}'

Then, &y is a SUN over U. Since M = {0,2,4} is a mazimal subset of N such that &y (m0) = & (0) for all
m € M, then (n)o = Enr. Stmilarly, since K = {0,3} is a mazimal subset of N such that £x(k0) = Ex (k)
forall k € K, then (En)c =€k -
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Table 3. Multiplication Table of N

.10 1 2 3 4 5
0jo o 0 0 0 O
113 1 5 3 1 5
210 2 4 0 2 4
313 3 3 3 3 3
410 4 2 0 4 2
5/3 5 1 3 5 1
Theorem 4.1. Let {n be a SUN over U.
i) If N =Ny, then ({n)o = &N -
i) If N = N, then (x)c = &N .
Proof. Similar to proof of Theorem 3.1, hence omitted. O

The converse of Theorem 4.1 doesn’t hold, in general. We have the following example:

Example 4.2. Let the NR N = (Zg,+,.) be in Example J.1. Assume that N is the set of parameters and
U = Z, is the universal set. If we define a soft set Fy over U by En(0) =En(1) =En(2) =En(3) =En(4) =
En(B)=Z, then &y is a SUN over U and (En)o =En, but 3.0 £ 0, i.e. N is not a zero-symmetric NR.
If we define another soft set (n over U by (n(0) = (n(2) = (n(4) = {0,1,2} and (n(1) = (N(3) =
Cv(B) = {0,1,2,3,4}, then (n is a SUN over U. Since (x(00) = (n(0), ¢n(10) = (N (3) = (N (1),
(v(20) = ¢n(0) = ¢n(2), Cn(30) = (N (3), (v (40) = (N (0) = Cn(4) and (N (50) = (N (3) = Cn(5), then
((N)e=Cn. But 1.0=3+#1, i.e. N is not a constant NR.

Theorem 4.2. Let N and M be NRs and let {n and gpr be SUN s over U. Then,

i) (§n)o V (gam)o = (En V gm)o

it) (€n)eV (gm)e = (En V gm)e
Proof. i) By Theorem 2.4, {5V gar is a SUN over U. Assume that (§n)o = £k and (gar)o = ¢r. Then, K
is a maximal subset of N such that x(x) = En(x) for all x € K and L is a maximal subset of M such that

Cr(z) = gu(zx) for all x € L. By Definition 2.3, let £k V (1 = tikvr, where txyr(z,y) = €k (x) UL (y) for all
(x,y) € K x L. Let (k,l) € K x L. Then

(€x VCL)((k,1)-(0,0)) = trvL(k0,10)
= &x(k0)UCL(10)
= Ex(0)U(L(0)
= tgvr(0,0)

Hence, &k V ¢, = (En)o V (gnm)o = (En V gar)o- The rest of the proof can be obtained similarly. O

Theorem 4.3. Let & and (y be SUN s over U. Then,
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i) (En)oU(Cn)o = (EnUCN)o
“) (5N)cg(<N)c = (SNOCN)c

Proof. i) By Theorem 2.5, ExyU(xn is a SIN over U. Assume that (Ex)o = €k and (Cy)o = ¢r. Then, K is

a maximal subset of N such that &x(x) = {n(z) for all x € K and L is a maximal subset of N such that

Cr(z) = (n(z) for all x € L. By Definition 2.2, let £xU(L = tgqy, where typq,(7) = Ex(z) U (p(x) for all
x € N. Let z € N. Then,

(€xUCL)(20) = tgpp(20)
= &k (20) U (L (20)
= &k (0)UCL(0)
= Jfxor(0)
Hence, £xUCL = (€n)0U(CN)o = (ExUCN)o. The rest of the proof can be obtained similarly. O

Corollary 4.1. Let £x and (n be SUN s over U. Then,
i) (€n)o Ur (Cv)o = (v Ur Cw)o
i) (§n)cUr (Cn)e = (EN Ur CN)e

Proof. The proof is similar to proof of Theorem 4.3. O

5. Soft int-product applied on soft parts of SINs

Definition 5.1. Let N be a NR and £y and (x be soft sets over the common universe U. Then, soft
int-product €y o (n is defined by

~ U,—Aén(y) NN (2)}, if Jy,2 € N such that x = yz,
(En o Cn)(2) = { 0 Y otherwise

for all x € N. It is obvious that if N is a NR with identity, then the second condition does not exist.
Let £&n and (n be soft sets over U. If £x(x) C (n(x) for all £ € N, then we denote it by

EN CCN-
It is well-known that NyNy C Ny. Similarly, we have the following theorem:
Theorem 5.1. Let {n be a SIN and (§x)o = Enr - Then,

Evr o &m C &

Proof. Let m € M. If (§pr 0&pr)(m) = 0, then it is obvious that
Enr 0§ (m) C En(m),

for all m € M. Thus,
Emoénm Céume
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Otherwise, there exist elements x,y € M such that m = xy. Thus,

(€ar 0 &) (m) U (@) némy)}

U éulay)

= Uem(m)
= &u(m)

N

Thus,

Emo&m Cém.
Here, note that since &y is a SIN, En(xy) D En(x) NEn(y) for all € N. And, since &y is the restricted
function of f to M, then &n(xy) D Enr(x) N€pr(y). That is, £y is a SIN, too. O

Note that the converse of Theorem 5.1, that is £y C &pr 0 €pr, does not hold as seen in the following

example.

Example 5.1. [52] Let N = {0,1,2,3} be the (right) NR due to [5}] (Near-rings of low order (D-10)) defined
by the following tables:

W~ S+
WS~ DD
S WA N~
~ o dofte
© ~ D ol w
LB~
SO
LW~ I~
SIS RS
W~ W

Assume that N is the set of parameters and U = { { ;C :?j } | z,y € Z4}, 2 X 2 matrices with Z4 terms,

is the universal set. We define a soft set {n over U by

so- {00 [0 e ][220 o))

= O
o W -
o w —
o w

Then, one can easily show that the soft set &n is a SIN over U. Since N is a zero-symmetric NR, then
(En)o =&n by Theorem 3.1. It is seen that

wo-{[11][0 0] [0 )
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(ENofN)@){{(l) (1)]’{3 g}}

As is seen, £ 0 £y needs not be equal to &y, however we have the following :

and

Therefore, En LLEN 0EN -

Theorem 5.2. Let &y be a SIN and (Ex)o = &xs. Then,
(&n 0 &ar)(0) = & (0).

Proof. (€ar 0 €31)(0) C €1(0) is obvious by Theorem 5.1. Thus, we need to show that
(&nr 0 &) (0) 2 Enr(0).

Note that
(Err 0 &ar)(0) £ 0, since 0=0-0.

So, let =,y € M such that 0 = xy. Thus,

Emo&a)0) = | {em(@) ném(y)}

0=zy

D £4(0) N €ar(0) (since 0=0-0)

= &u(0)
Thus, the proof is completed. O

It is known that if &y is a SIN, then {n(0) D En(x) for all £ € N. Moreover, we have the following:

Theorem 5.3. Let N = Ny, {n be a SIN and (En)o = Enm - Then,

(&ar 0 &ar)(0) € Enr()
forall x € M.

Proof. Let x,y € M such that 0 = xy. Thus,

Enwoen)©0) = | fum@) néu(y)}

O=xy

D &y(x) Nép(0) (since N = Ny, 0=x0)
D &u(x)Népy(x) (by Lemma 2.1)
= Su(x)
Thus, the proof is completed. -

It is known that N.N. C N.. However, we have the following theorem:

Theorem 5.4. Let N = N., {n be a SIN and (En)e = &c. Then,
§ooéc =Eo-
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Proof. Here, first note that

((cobc)#0

since N = N,, forall ce N, c=c¢-0. So, let xz,y € C such that ¢ = zy. It follows that,

Coote)o) = | {éel@)néo)

c=xy

N

U ¢o(zy) (since Eois a soft int near — ring)

c=xy

= Yeelo

= &cl(o)

Thus,

coéc Céc.

Moreover,

(ooto)e) = U {fo@n fely)}

fe(e) N fe(0) (since N = N., ¢=c0)
fele)n fe(e) (by Lemma 2.1)
fe(e)

U 1

Thus,

Ecoéc D&c and so Ecoéc = &c.

6. Soft uni-product applied on soft parts of soft uni near-rings

Definition 6.1. Let N be a NR and £y and (n be soft sets over the common universe U. Then, soft
uni-product &y * (n is defined by

-Gl = { [lrlE8OU9: S €t =

for all x € N. It is obvious that if IV is a NR with identity, then the second condition does not exist.
Theorem 6.1. Let N be a NR with identity, £x be a SUN and (En)o = Enm - Then,
IVERIVEEIVE
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Proof. Since N is a NR with identity, there exist elements z,y € M such that m = xy. Thus,

Eu=&an)m) =[] {&m@) Uénm(y)}

m=xy

n Em (zy)

= (ém(m

= &u(m)

U

Thus,
Em * & D Emr-
Here, since &y isa SUN, &n(xy) C En(x) UEn(y) for all z € N. And, since &)/ is the restricted function of
f to M, then &y (zy) C En(z) U&n(y). That is, £y is a SUN, too. O
Note that the converse, that is £y, D €ar % £y does not hold as seen in the following example.

Example 6.1. Let N = {0,1,2,3} be the the (right) NR in Ezample 5.1. Assume that N s the set of

parameters and U = Ss, symmetric group, is the universal set. We define a soft set En over U by

Env(0) ={(1)}, &n(1) ={(1),(12),(13)}, &n(2) = {(1), (12)}, &n(3) ={(1),(12),(13))}

Then, one can easily show that the soft set &y is a SUN over U and (En)o = En by Theorem 3.1. Moreover,

all x element of N, can be expressed as x = yz. Hence,

Env*En # 0.
However, it is seen that

(€n x&En)(2) = {(1),(12), (13)},
thus, En DEN * &N -

As is seen, & x £)r needs not be equal to &y, however we have the following :

Theorem 6.2. Let n be a SUN and (En)o =& - Then,
(& # Ear)(0) = Ear(0).
Proof. First note that, since 0 =0-0, ({ar % Ear)(0) # 0. Moreover,

(Enr * 1) (0) 2 € (0)

is obvious by Theorem 6.1. Therefore, we need to show that

(En * E0r)(0) C Ear(0).

Since
Emx&n)©0) =[] {ém@) Uén(y)}
O=zy
C &m(0)U&nm(0)
= &m(0)
the proof is completed. O

69



AKIN OSMAN ATAGUN and ASLIHAN SEZGIN

It is known that if £ is a SUN, then {x(0) C En(z) for all € N. Moreover, we have the following:
Theorem 6.3. Let N = Ny, {n be a SUN and (En)o = En - Then,
(&n  Ear)(0) € En ()
forall x € M.

Proof. Let x,y € M such that 0 = xzy. Thus,

Emx&n)0) =[] {&m@) Uén(y)}
O=zy
C &u(x)U&nm(0) (since 0 = z0)
C étm(z)Uém(z) (by Lemma 2.2)
= Su(z)
Thus, the proof is completed. O

Theorem 6.4. Let N be a NR, N= N, and £y be a SUN. If (€n). = fo, then

o *x&c = &c.

Proof. Note that since N = N,
(€c x&c) # 0.
Let z,y € C such that ¢ = xy. It follows that,

(Eoxéo)e) = () {fol@)U fo(y)}
> () felay)
= [felo
= fe(o)
Thus,
§o*&c D &e-
Moreover,
(Coxto)e) = [){cl@)Uécw)}
C &c(c)Uée(0) (since N =N, c=c0)
C &c(e)néc(e) (by Lemma 2.2)
= &olo)
Thus,

Eox€c C & and therefore, o *x&c =&c.
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7. Conclusion

The concepts soft int near-rings and soft uni near-rings were first introduced and studied in [52] and [53]. In

this paper, by using the soft sets, we have defined soft zero-symmetric part and soft constant part of soft int

near-rings and soft uni near-rings. We have obtained many results on some operations of soft sets which preserve

under soft zero-symmetric part and soft constant parts. Furthermore, we have defined soft int-product and soft

uni-product of soft int near-ring and soft uni near-ring and have given some applications of them to soft parts of

soft int near-rings and soft uni near-rings, respectively. The construction of the soft O-symmetric part and the

soft constant part aids in the advancement of the soft near-ring theory as the 0-symmetric and constant sections

of a near-ring structure are crucial for characterizing the near-ring. To extend this study, one can further study

the relations between zero-symmetric part (resp. constant part) of a near-ring and soft zero-symmetric part

(resp. soft constant part) of a soft int(or uni) near-ring.
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