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Abstract: This article dealt a new submaximal space called mIαg-submaximal space in ideal minimal space. Significant

properties of mIαg-submaximal space are studied. Equivalent conditions concerned with mIαg-submaximal space and

mIαg-locally m∗ -closed sets, m∗ -codense sets, pre-m-I-open sets are also established
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1. Introduction

Submaximality in general topological spaces was introduced by Hewit [7]. He defined a general way of con-

structing maximal topologies. A systemaized approach on submaximality in topological spaces is followed by

Arhangel’skii et.al [1]. Necessary and sufficient conditions of submaximality are also proved by them. They

have also proved that the submaximal space is left separated in a topological space. The concept, ideal in

topological spaces was studied by Kuratowski [9] and Vaidyanathaswamy [16]. Several properties of ideal topo-

logical spaces were discussed by Jankovic et.al [8]. Properties of I-submaximal spaces was studied by Erdal

Ekici et.al [6]. Ig-submaximal spaces was introduced by Bhavani et.al [3]. The concept of minimal structure

and minimal spaces were introduced and studied by maki et.al [10]. Quite recently [11] Ozbakir et.al studied

the impact of ideals in minimal spaces and termed as ideal minimal spaces. They have initiated A∗m , called

the minimal local function in ideal minimal spaces. α -generalised closed sets (briefly mIαg-closed sets) in ideal

minimal spaces was introduced and some significant properties were studied by Parimala et.al [2]. The concept

Locally closed, on mIαg closed sets (briefly mIαglocally m∗ -closed sets) was defined by Parimala et.al [12] In

this paper we have proved some equivalent conditions of mIαg locally m∗ -closed sets. Further we have defined

mIαg-submaximal spaces in ideal minimal spaces and discussed significant properties of and mIαg-submaximal

spaces. Also we have proved several equivalent conditions on mIαg-submaximal spaces.

2. Preliminaries

Definition 2.1. [9] Let X be a set and is non empty. Let I be the collection of subsets of X which is also

non empty. I is referred as an ideal if it satisfies the conditions. Let A,B be any two subsets of I such that

(i) A ∈ I and B ⊂ A implies B ∈ I (ii) A ∈ I and B ∈ I implies A ∪B ∈ I .

Definition 2.2. [10] Consider a set X and M represents the set of all possible subsets of X . M is termed as

the minimal structure if φ and X should be the members of M . The minimal spaces we mean the set X with

the minimal structure M say (X,M). The elements of M are referred as m -open sets and their complements
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are called m-closed sets. The interior and closure of m-open sets are denoted by m -int and m -cl respectively

and are defined as m -int(A)=∪{U : U ⊂ A,U ∈M} , m-cl(A)= ∩{F : A ⊂ F,X − F ∈M} .

Remark 2.3.[11] The minimal space (X,M) is said to exhibit the property [U ] if the union of any number

of m -open sets is a m-open set and the property [I] if the intersection of finite number of m -open sets is a

m -open set.

Definition 2.4. [11] Let P (X) denotes the power set of (X,M, I). The mapping (.)∗m : P (X) −→ P (X) leads

the definition of the minimal local function A∗m as {x ∈ X : Um ∩A /∈ I} for all Um ∈ Um(x).

Theorem 2.5. [11] In a minimal space (X,M), let I1, I2 be two ideals on X . K1 and K2 be subsets of X .

Then

(a) K1 ⊂ K2 ⇒ K1m
∗ ⊂ K2m

∗ .

(b) K1m
∗ ∪K2m

∗ ⊂ (K1 ∪K2)∗m .

(c) (K∗m)∗m ⊂ K∗m .

(d) K∗m = m-cl(K∗m) ⊂ m-cl(K).

(e) I1 ⊂ I2 ⇒ K∗m(I2) ⊂ K∗m(I1).

Remark 2.6. [11] If the ideal minimal space (X,M) includes the property [I] , then (b) of Theorem 2.5 satisfies

the equality. That is K1m
∗ ∪K2m

∗ = (K1 ∪K2)∗m .

Definition 2.7. [11] The minimal ∗ -closure operator m -cl∗ on a subset A of (X,M, I) is defined as the union

of A and A∗m . That is m-cl∗(A) = A∪A∗m . The minimal structure on m-cl∗ is termed as M∗(I,M) which is

defined as M∗(I,M) = {F ⊂ X : m -cl∗(X − F ) = X − F} . The members of M∗ are named as m∗ -open sets.

The interior of m∗ -open sets is denoted by m -int∗(A).

Proposition 2.8.[11] Salient features of the minimal ∗ -closure operator m -cl∗ are listed below. Let

K,K1,K2 ⊂ X

(a) m-cl∗(K1) ∪m-cl∗(K2) ⊂ m -cl∗(K1 ∪K2).

(b) If K1 ⊂ K2 , then m-cl∗(K1) ⊂ m -cl∗(K2).

(c) K ⊂ m -cl∗(K).

(d) m-cl∗(φ) = φ and m -cl∗(X) = X .

Remark 2.9. [11] When the ideal minimal space (X,M, I) includes the property [I] then equality holds in (a)

of Theorem 2.8. That is m -cl∗(K1 ∪K2) = m -cl∗(K1) ∪m-cl∗(K2) and also m-cl∗(m-cl∗(K)) = m -cl∗(K)

for the subset K .

Definition 2.10. [11] In an ideal minimal space (X,M, I), a subset A is termed as m∗ -dense in itself set if A

is a subset of A∗m (briefly A ⊂ A∗m ).

Lemma 2.11.[11] If a subset A is seems to be a m∗ dense in itself set in an ideal minimal space, then the

following equality holds. A∗m = m-cl(A∗m) = m-cl(A) = m -cl∗(A).

Definition 2.12 [4] A subset A of X is defined as a m∗ -dense set if m -cl∗(A) = X .
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Definition 2.13. [2] Let A be non empty subset of X , then A is defined to be a mIαg-closed set if A∗m ⊆ U
whenever A ⊆ U , U is a αm-open set.

Lemma 2.14. [2] If a set A is a m∗ -closed set, then it is be a mIαg-closed set.

Definition 2.15. Consider a subset A of X , then A is defined to be a

(1) I-locally m∗ -closed set [14] if A equals the intersection of a m -open set U and a m∗ -closed set F . That

is A = U ∩ F .

(2) mIαg-locally m∗ -closed set [12] if there exists a mIαg-open set U and a m∗ -closed set F such that

A = U ∩ F .

(3) pre-mI-open set [13] if A ⊂ m -int(m -cl∗(A)).

Lemma 2.16. [4] m∗ -dense sets are pre-mI-open sets.

Definition 2.17. [4] A subset A of a minimal space X is termed to be

(a) m -I -dense if A∗m = X .

(b) m∗ -codense set if (X −A) is a m∗ -dense set.

Definition 2.18. The ideal minimal space (X,M, I) is defined to be a

(a) m -T1 -space [15] if there exists two elements x, y of X such that x∩ y = φ , there exists a m-open set P

that contains x , but not y and another m -open set Q that contains y , but not x .

(b) m -I -submaximal space [5] if every m∗ -dense subset of X is a m -open set.

3. mIαg-locally m∗ -closed set

Some Characterisations of mIαg-locally m∗ -closed set are as follows.

Theorem 3.1. The necessary and sufficient conditions of a subset A to be a mIαg-closed set is m -cl∗(A) ⊆ U ,

A ⊂ U where U is a m -open set.

Proof. Necessity. Consider a mIαg-closed set A and a m -open set U . Since m -cl∗(A) = A ∪A∗m . Also we

have A ⊆ U , A∗m ⊂ U and U is a m-open set. Therefore m -cl∗(A) ⊆ U .

Proof. Sufficiency. Let m -cl∗(A) ⊆ U , A ⊆ U and U is a m -open set. Since m -cl∗(A) = A ∪A∗m ⊆ U , we

get A,A∗m ⊆ U , U is m-open. Since every m-open set is a αm-opens set, A∗m ⊆ U , A ⊆ U , U is a αm-open

set. Therefore, A is a mIαg-closed set.

Theorem 3.2. A m -closed set is always a mIαg closed set, equivalently (A m -open set is a mIαg-open set.)

Proof. Consider a αm open set U and let A ⊆ U be a m -closed set in X , then m -cl(A) = A , which implies

m -cl(A) ⊆ U . It is clear that m -cl∗(A) ⊆ m-cl(A) ⊂ U . Since m -cl∗(A) = A ∪ A∗m and A ⊆ U we get

A∗m ⊆ U , where U is a αm-open set. Hence A is a mIαg closed set.

Theorem 3.3. If a subset A of (X,M, I) is a I-locally m∗ -closed set, then it is a mIαg-locally m∗ -closed set

and the converse of this theorem may not be true explained in Example 3.4.

Proof. Referring Theorem 3.2, the proof follows from the definition of I-locally m∗ -closed set.

Example 3.4. (X,M, I) be a ideal minimal space with X = {a, b, c} , M = {φ,X, {a}, {b, c}} and I =

{φ, {c}} . In this example mIαg-locally m∗ -closed sets are the elements of the power set of X , but the {b} is

not a locally m∗ -closed set.
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Theorem 3.5. Consider the ideal minimal space (X,M, I) and A ⊂ X is m∗ -dense in itself then statements

below given are equivalent.

(a) A is an mIαg-locally m∗ -closed set.

(b) A equals the intersection of a mIαg-open set U and m -cl∗(A). That is A = U ∩ m-cl∗(A) for a

mIαg-open set U .

(c) m -cl∗(A)−A and A∗m −A are equal and also mIαg closed sets.

(d) A ∪ (X −m -cl∗(A)) and A ∪ (X −A∗m) are equal and also mIαg-open sets.

(e) A ⊂ m-int(A ∪ (X −A∗m))

Proof. (a) =⇒ (b). If A is an mIαg-locally m∗ -closed set, then A = U ∩ F where U is mIαg-open and F is

m∗ -closed, that is F ∗m ⊂ F . Since A = U ∩ F , we have A ⊂ U and A ⊂ m-cl∗(A). Therefore A ⊂ U ∩m-

cl∗(A). Since F is m∗ -closed and A ⊂ F , m -cl∗(A) ⊂ m -cl∗(F ), which implies U ∩ m-cl∗(A) ⊂ U ∩ m-

cl∗(F ) ⊂ U ∩ F = A . Then A = U ∩m -cl∗(A).

(b) =⇒ (c). Consider m-cl∗(A) − A = A∗m − A = A∗m ∩ (X − A) = A∗m ∩ (X − (U ∩ m-cl∗(A))) =

A∗m ∩ (X − U). Let V be a m -open set such that m -cl∗(A) − A ⊂ V . Then A∗m ∩ (X − U) ⊂ V , which

implies (X − U) ⊂ ((X − A∗m) ∪ V ). Since U is mIαg-open set (X − U) is a mIαg-closed set. Therefore

by Theorem 3.1, we get m -cl∗(X − U) ⊂ ((X − A∗m) ∪ U . Also A∗m ∩ m-cl∗(X − U) ⊂ V . Consider

A∗m∩(X−U) ⊂ A∗m and A∗m∩(X−U) ⊂ (X−U). By Theorem 2.5(a)we get (A∗m∩(X−U))∗m ⊂ (A∗m)∗m ⊂ A∗m
and (A∗m ∩ (X −U))∗m ⊂ (X −U)∗m ⊂ m -cl∗(X −U). Therefore (A∗m ∩ (X −U))∗m ⊂ A∗m ∩m -cl∗(X −U) ⊂ V .

Also m -cl∗(A)−A = A∗m ∩ (X −U). Therefore we get (m-cl∗(A)−A)∗m ⊂ A∗m ∩m -cl∗(X −U) ⊂ V . That is

(m-cl∗(A)−A)∗m ⊂ V and V is a m -open set and hence V is a αm-open set. Finally we have proved that (m-

cl∗(A)−A)∗m ⊂ V whenever (m-cl∗(A)−A) ⊂ V , V is a αm-open set, which implies (m-cl∗(A)−A) = A∗m−A
is a mIαg-closed set.

(c) =⇒ (d) Since m-cl∗(A)−A is mIαg-closed, (X−(m-cl∗(A)−A)) is mIαg-open, which implies A∪(X−m -

cl∗(A))⇒ A ∪ (X − (A ∪A∗m)) is mIαg-open and hence A ∪ (X −A∗m) is mIαg-open.

(d) =⇒ (e) Since A ⊂ (A ∪ (X − A∗m)), m -intA ⊂ m-int(A ∪ (X − A∗m)). Therefore A ⊂ m-int(A) ⊂ m -

int(A ∪ (X −A∗m)) and hence A ⊂ m -int(A ∪ (X −A∗m)).

(e) =⇒ (a) By (e) we can say A∪(X−A∗m) ⊂ m-int(A∪(X−A∗m)). By (d)A∪(X−m -cl∗(A)) = A∪(X−A∗m)

is a mIαg-open set. Also A ∪ (X − m -cl∗(A)) ∩ m -cl∗(A) = (A ∩ m-cl∗(A)) ∪ ((X − m -cl∗(A)) ∩ m -

cl∗(A))) = (A ∩ (A ∪ A∗m)) ∪ φ = A ∪ (A ∩ A∗m) ∪ φ = A since A is a m∗ dense set. Also since A is a

m∗ dense set, A ⊂ A∗m). Therefore m-cl∗(A = A∗m)). Hence (m-cl∗(A))∗m = (A∗m)∗m = A∗m = m-cl∗(A). That

is (m-cl∗(A))∗m ⊂ m-cl∗(A). Therefore m -cl∗(A) is a m∗ -closed set. That is A = (A ∪ (X −A∗m) ∩m -cl∗(A)

such that A = (A∪(X−A∗m) is a mIαg -open set and m-cl∗(A) is a m∗ -closed set. Therefore A is mIαg -locally

m∗ -closed set.

Theorem 3.6. If G is a m -open subset of the ideal minimal space (X,M, I), then G is mIαg -locally m∗ -

closed set, but the converse need not be true.

Proof. Lemma 2.14 and Theorem 3.2 proves the Theorem.

Example 3.7. Let the ideal minimal space with X = {a, b, c} , M = {φ,X, {a}, {b, c}} and I = {φ, {c}} . In

this example mIαg-locally m∗ -closed sets are the elements of the power set of X , but the {b} is not a m-open

set.
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Theorem 3.8. A mIαg -locally m∗ -closed set which is also a m -I -dense set, is a mIαg -open set.

Proof. Referring Theorem 3.5(d) if a set A is a mIαg -locally m∗ -closed set then A ∪ (X −m -cl∗(A)) is a

mIαg -open set. By the definition of m-I -dense set we get A∗m = X . Therefore m -cl∗(A) = A ∪ A∗m = X ,

which implies A ∪ (X −X) = A is a mIαg -open set.

Corollary 3.9. Let A be an m -I -dense subset of X , then A is a mIαg -locally m∗ -closed set if and only of

A is a mIαg -open set.

Theorem 3.10. Let (X,M, I) be an ideal minimal space satisfying property [I] , then we can prove the

equivalent statements on mIαg -locally m∗ -closed sets.

(a) Every subset of X is a mIαg -locally m∗ -closed set.

(b) Every m∗ -dense set a mIαg -open set.

Proof. (a) =⇒ (b) The proof follows from Theorem 3.5(d).

(b) =⇒ (a) Consider a subset K of X . Let S = K ∪ (X −m -cl∗(K)). Then m-cl∗(S) = m -cl∗(K ∪ (X −m-

cl∗(K))) = (K ∪ (X − m-cl∗(K)) ∪ (K ∪ (X − m -cl∗(K)))∗m = (K ∪ (X − m -cl∗(K))) ∪ K∗m ∪ (X − m-

cl∗(K))∗m = m -cl∗(K) ∪m -cl∗(X −m -cl∗(K)) = m -cl∗(K) ∪ (X −m -cl∗(K)) = X . That is we have proved

m-cl∗(S) = X . Therefore by Definition 2.12 S is a m∗ -dense set. By (b) S is a mIαg -open set. Therefore

by Theorem 3.5(d), K is a mIαg -locally m∗ -closed set. Theorem 3.11. Let (X,M, I) be an ideal minimal

space satisfying the property [U ] and A ⊂ X , is a m∗ -dense set. The necessary and sufficient condition that

the set A is a mIαg -locally m∗ -closed set is A ∩ (A∗m −A)∗m is a mIαg -open set.

Proof. Let A ⊂ X . Consider (m -cl∗(A)∩(X−A))∗m−(m -cl∗(A)∩(X−A)) = (m -cl∗(A)∩(X−A))∗m∩(X−(m-

cl∗(A) ∩ (X − A)) = m-cl∗(A) ∩ (X − A))∗m ∩ ((X − m -cl∗(A)) ∪ A) = (m-cl∗(A) ∩ (X − A))∗m ∩ (X − m-

cl∗(A)) ∪ (m-cl∗(A) ∩ (X − A)∗m ∩ A) = φ ∪ (m-cl∗(A) − A)∗m ∩ A = (A∗m − A)∗m ∩ A by Theorem 3.5(c) A

is a mIαg -locally m∗ -closed set implies m-cl∗(A) − A = m -cl∗(A) ∩ (X − A) is a mIαg -closed set. Hence

(m -cl∗(A) ∩ (X −A))∗m − (m -cl∗(A) ∩ (X −A)) is a mIαg -open set. That is (A∗m −A)∗m ∩A is a mIαg -open

set.

4. mIαg-Submaximal spaces

Definition 4.1. An ideal minimal space (X,M, I) is said to be a mIαg-submaximal space if every m∗ -dense

subset in X is a mIαg-open set.

Theorem 4.2. Every mI -submaximal space is a mIαg-submaximal space, but the converse of this statement

may not be true.

Proof. Consider a m∗ -dense set A of a mI -submaximal space X . By the definition of mI -submaximal space

A is a m -open set. By Theorem 3.2, A is a mIαg-open set in X . Therefore (X,M, I) is a mIαg-submaximal
space.

Example 4.3. Consider the ideal minimal space (X,M, I) with X = {a, b, c, d} and M = {φ,X, {a, b}, {b, c}, {a, c, d}}
and the ideal I = {φ, {c}} . m∗ -dense sets are {{a, b}, {a, b, c}, {a, b, c}} . In this example (X,M, I) is a mIαg-

submaximal space, but not a mI -submaximal space since {a, b, d} is a m∗ -dense set, but not an m -open

set.

Lemma 4.4. When (X,M, I) represents a ideal minimal space and A ⊂ M , then below said statements are

equivalent.

(a) A is a mIαg-closed set.
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(b) For a m -open set U of X , m -cl∗(A) ⊂ U,A ⊂ U .

(c) Let x ∈ m -cl∗(A), m-cl(x) ∩A is non empty.

(d) m -cl∗(A)−A does not have non empty m -closed sets.

(e) A∗m −A does not have non empty m -closed sets.

Theorem 4.5. If (X,M, I) is a m-T1 ideal space and A is a m∗ -dense in itself set and mIαg-closed subset

of X , then A is a m-closed set.

Proof. Let A be m∗ -dense in itself set and mIαg-closed subset of X . Then by Lemma 4.4 there exists no non

empty m-closed set in m -cl∗(A)−A . Also since X is a m -T1 , A is a m∗ -closed set we have m -cl∗(A)−A = φ .

A is a m∗ -closed set implies m -cl∗(A) = m-cl(A). Therefore m-cl(A)− A = φ which implies m -cl(A) = A .

Hence A is a m -closed set.

Lemma 4.6 In a ideal minimal space (X,M, I) if a subset A is a pre-m-I-open set, then A can be expressed

as A = G ∩B , where G is a m -open set and B is a m∗ -dense set.

Proof. Consider a pre-m-I-open set A , we have A ⊆ m -int(m-cl∗(A) = U where U is a m -open set. Let

D = X − (U − A) = X − (U ∩ Ac) = X ∩ (U ∩ Ac)c = X ∩ (U c ∪ A) = (U c ∪ A) = (X − U) ∪ A . To prove D

is a m∗ -dense set it is enough to prove m-cl∗(D) = X . That is m-cl∗((X − U) ∪ A) ⊇ m-cl∗(X − U) ∪m-

cl∗(A) ⊇ (X −m-cl∗(A) ∪m -cl∗(A) = X . Therefore D is m∗ -dense set. Also U ∩D = U ∩ ((X − U) ∪A) =

(U ∩ (X −U))∪ (U ∩A) = φ∪ (U ∩A) = φ∪A = A here A ⊆ U . That is A = U ∩D such that U is a m -open

set and D is a m∗ -dense set.

Remark 4.7. Property [] refers ”union of two mIαg-closed sets is a mIαg-closed set” and property [υ] refers

”For any two mIαg-closed sets A and B , A ∩B is also a mIαg-closed set”.

Theorem 4.8. Let (X,M, I) be the ideal minimal space satisfying property [υ] then statements below which

are equivalent.

(a) (X,M, I) is a mIαg-submaximal space.

(b) If A is a pre-m-I-open set, then A is a mIαg-open set.

Proof. (a) =⇒ (b). Let (X,M, I) is a mIαg-submaximal space and A ⊂ X be a pre-m-I-open set. By Lemma

4.6 A = U ∩D , U is a m-open set and D is a m∗ -dense set. Since X is a mIαg-submaximal space and D is

a mIαg-open set in X and U is a m -open set, implies U is a mIαg-open by Theorem 3.2, therefore A is a

mIαg-open set.

(b) =⇒ (a). Let A be m∗ -dense subset of X , then by Lemma 2.16 A is a pre-mI-open set. By hypothesis A

is a mIαg-open set. Therefore X is a mIαg-submaximal space.

Theorem 4.9. Let (X,M, I) be the ideal minimal space satisfying property [υ] then the following statements

are equivalent.

(a) (X,M, I) is a mIαg-submaximal space.

(b) If A is a subset of X , then A is a mIαg-locally m∗ -closed set.

(c) Any m∗ -dense subset of X is the intersection of a m∗ -closed set and a mIαg-open subset of X .
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Proof. (a) =⇒ (b). Let (X,M, I) be a mIαg-submaximal space, by definition of mIαg-submaximal space

every m∗ -dense set is a mIαg-open set. Referring Theorem 3.10, every subset is a mIαg-locally m∗ -closed set.

(b) =⇒ (c). Let A be a m∗ -dense set, by (a) of this theorem A is mIαg-locally m∗ -closed set. Theorem 3.5(b)

explains, there exists a mIαg-open set U such that A = U ∩m -cl∗(A). Consideration of A as a m∗ -dense set

we inferred that m -cl∗(A) = X . Hence A = U ∩m -cl∗(A) = U ∩X = U and U is a mIαg-open set in X .

(c) =⇒ (a). Let A be m∗ -dense set in (X,M, I), by (c) A = U∩E , U is a mIαg-open set and E is a m∗ -closed

set. Since A ⊂ E , E is m∗ -dense set. That is m -cl∗(E) = X . Since E is a m∗ -closed set m -cl∗(E) = E = X .

Hence A = U ∩ E = U ∩X = U and it is a mIαg-open set. Therefore (X,M, I) is mIαg-submaximal space.

Theorem 4.10. For an ideal minimal space, the following statements are equivalent.

(a) (X,M, I) is a mIαg-submaximal space.

(b) Whenever the subset A is not a mIαg-open set, we can prove A− (m-int(m-cl∗(A))) 6= φ .

Proof. (a) =⇒ (b). Assume the contrary that A − (m-int(m-cl∗(A))) = φ . Therefore A ⊂ (m-int(m-

cl∗(A))), means A is a pre-mI-open set. Since X is a mIαg-submaximal space, by Theorem 4.8, A is mIαg-

open. Which is a contradiction to our assumption that A is not a mIαg-open set. Therefore A − (m-int(m-

cl∗(A))) is non empty.

(b) =⇒ (a). Consider a pre-mI-open set A which is not a mIαg-open set, then by (b)A− (m-int(m-cl∗(A))) is

non empty, which implies A * (m -int(m -cl∗(A))). That is A may not be a pre-mI-open set. Which contradicts

to our assumption that A is Pre-mI-open. Therefore A is a mIαg-open set and hence referring Theorem 4.8

X is mIαg-submaximal space.

Theorem 4.11. Consider an ideal minimal space(X,M, I) with the property [υ] , then it is possible for the

equivalent statements on mIαg-submaximal spaces.

(a) (X,M, I) is a mIαg-submaximal space.

(b) The family of all mIαg-open sets ζ such that ζ={U −A : U is mIαg-open and m-int∗(A) = φ} .

Proof. (a) =⇒ (b). Let X mIαg-submaximal space. Construct a σ as σ={U −A : U is mIαg-open and m-

int∗(A) = φ} . Our aim is to prove σ = ζ . Consider an element G ∈ ζ . Since G = G− φ and m-int∗(φ) = φ ,

G ∈ σ .

Hence ζ ⊂ σ .———(1)

Let G ∈ σ . It is sufficient to prove G is a mIαg-open set. Since G ∈ σ , G can be written as G = U −A such

that U is a mIαg-open set and m -int∗(A) = φ . Also G = U − A = U ∩ (X − A). Since m -int∗(A) = φ ,

X − (m-int∗(X −A)) = m-cl∗(A) = X . That is (X −A) is a m∗ -dense set. Since X is a mIαg-submaximal

space, (X−A) is a m∗ -dense set implies (X−A) is a mIαg-open set. Hence G = U ∩ (X−A) is a mIαg-open

set and so
σ ⊂ ζ .—————(2)

combining equations (1) and (2)we have proved σ = ζ . Hence (b) can be followed.

(b) =⇒ (a). Consider A be a pre-mI-open set. With reference of Lemma 4.6. A can be written as the

intersection of the sets G and B such that G is a m -open set and B is a m∗ -dense set. Therefore m-

cl∗(B) = X and so m-int∗(X − B) = φ . That is A = G ∩ B = G − (X − B) and m-int∗(X − B) = φ . By

Theorem 3.2 G is a mIαg-open set. Therefore A ⊂ ζ and hence A is a mIαg-open-set. That is assumption of
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the pre-mI-open set A leads that A is mIαg-open. Hence Theorem 4.8. infers that X is a mIαg-submaximal
space.

Theorem 4.12. Let (X,M, I) be an ideal minimal space satisfying the property [I] then the equivalent

statements on mIαg-submaximal spaces are as follows.

(a) X is a mIαg-submaximal space.

(b) There exists a mIαg-closed set m -cl∗(A)−A for every subset A of X .

Proof. (a) =⇒ (b). Consider a mIαg-submaximal space (X,M, I) and let A ⊂ X . To prove m -cl∗(A) − A
is mIαg-closed set is sufficient to prove X − (m -cl∗(A) − A) is mIαg-open. We need to prove X − (m-

cl∗(A)−A) is a m∗ -dense set. It is necessary to prove that m-cl∗(X − (m-cl∗(A)−A)) = X . Proceeding as,

m -cl∗(A∪ (X − (m -cl∗(A)))) = m -cl∗(A)∪m-cl∗(X − (m -cl∗(A))) = X . Therefore (X − (m-cl∗(A)−A)) is

a m∗ -dense set. Also since X is a mIαg-submaximal space, by the definition of mIαg-submaximal space every

m∗ -dense set is a mIαg-open set. Hence (X − (m-cl∗(A)−A) is a mIαg-open set. Therefore (m-cl∗(A)−A)

is a mIαg-closed set.

(b) =⇒ (a). Let (m -cl∗(A)−A) be a mIαg-closed set and let A ⊂ X be a m∗ -dense set in (X,M, I). Therefore

m -cl∗(A) = X , implies (X − A is a mIαg-closed set. So A is mIαg-open. (X,M, I) is mIαg-submaximal
space.

Theorem 4.13. Consider a m∗ -dense subset A , which is also a m∗ -dense in itself set in a ideal minimal space

(X,M, I), then the equivalent statements are as follows.

(a) (X,M, I) is a mIαg-submaximal space.

(b) A ∩ (A∗m −A)∗m is a mIαg-open set for every A ⊂ X .

Proof. (a) =⇒ (b). Let (X,M, I) is a mIαg-submaximal space. By Theorem 4.9, every subset of A of X is

a mIαg-locally m∗ -closed set. Then by Theorem 3.11 A ∩ (A∗m −A)∗m is a mIαg-open set in X .

(b) =⇒ (a) By hypothesis A ∩ (A∗m − A)∗m is mIαg-open for every A ⊂ X . Since A is a m∗ -dense set we

have m -cl∗(A) = X . So that A∗m − A = m -cl∗(A)− A = X − A . Hence A ∩ (A∗m − A)∗m = A ∩ (X − A)∗m =

(X −A)∗m − (X −A) is a mIαg-open set and hence (X −A) is a mIαg-closed set, implies A is a mIαg-open

set. Therefore (X,M, I) mIαg-submaximal space.

Theorem 4.14. For a topological space with minimal structure M and the ideal I , then the following

statements are equivalent.

(a) (X,M, I) is a mIαg-submaximal space.

(b) If a subset A is a m∗ -codense subset of X , then it is a mIαg-closed set.

Proof. (a) =⇒ (b). Let A be a m∗ -codense set, then (X −A)is a m∗ -dense set. By Theorem 4.13, (X −A)

is a mIαg-open set. Hence A is a mIαg-closed set.

(b) =⇒ (a). Since A is a m∗ -codense set (X − A) is a m∗ -dense set and so (X − A) is a mIαg-open set.

Therefore by Theorem 4.13 (X,M, I) is a mIαg-submaximal space.

Theorem 4.15. Let (X,M, I) be an ideal minimal space, where I is a m -codense ideal.If every subset is

m-I-locally -m-closed, then (X,M, I) is a mIαg -submaximal space.

Proof. Let A be m∗ -dense set. Since I is m -codense, A is ,m-I-dense and m-I-locally -m-closed,then A is
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m -open and hence mIαg -open. Therefore X is mIαg -submaximal space.

Theorem 4.16. In a mIαg -submaximal space (X,M, I) if for any two ideals I, I ′ such that I ⊂ I ′ , then

(X,M, I ′) is a mI ′αg -submaximal space.

Proof. Let A be m∗(I ′)-dense subset in (X,M, I ′), then A∪A∗m(I ′) = X . As I ⊂ I ′ we get A∗m(I ′) ⊂ A∗m(I),

which implies that X = A ∪ A∗m(I ′) ⊂ A ∪ A∗m(I). That is A ∪ A∗m(I) = X . Thus A is a m∗(I)-dense set.

As (X,M, I) is mIαg -submaximal, A is mIαg -open. Since I ⊂ I ′ , A is mI ′αg -open. Therefore (X,M, I ′)

is mIiαg -submaximal space.

5. Conclusion

In this article we have discussed some salient features of mIαg -locally m∗ -closed sets. We have introduced

a new submaximality called mIαg -submaximality in ideal minimal spaces and studied its significant features.

Equivalence of mIαg -submaximality with Pre-mI-open sets, mIαg -locally m∗ -closed sets, m∗ -codense sets are

given. Heredity nature of ideals are imported under mIαg -submaximality. Future work of this article will be

in hyper connectedness and mIαg -submaximality.
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