

Submaximality under mI α g-closed sets in ideal minimal spaces

 $M.Parimala^{1*}$ and $D.Arivuoli^2$

¹Department of Mathematics, Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India. ²Department of Mathematics, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India.

Received: 26 Apr 2019 • Accepted: 10 Jun 2019	•	Published Online: 01 Aug 2019
---	---	-------------------------------

Abstract: This article dealt a new submaximal space called mI α g-submaximal space in ideal minimal space. Significant properties of mI α g-submaximal space are studied. Equivalent conditions concerned with mI α g-submaximal space and mI α g-locally m^* -closed sets, m^* -codense sets, pre-m-I-open sets are also established

Key words: mI α g-closed sets, mI α g-locally m^* -closed sets, mI α g-submaximal spaces

1. Introduction

Submaximality in general topological spaces was introduced by Hewit [7]. He defined a general way of constructing maximal topologies. A systemaized approach on submaximality in topological spaces is followed by Arhangel'skii et.al [1]. Necessary and sufficient conditions of submaximality are also proved by them. They have also proved that the submaximal space is left separated in a topological space. The concept, ideal in topological spaces was studied by Kuratowski [9] and Vaidyanathaswamy [16]. Several properties of ideal topological spaces were discussed by Jankovic et.al [8]. Properties of I-submaximal spaces was studied by Erdal Ekici et.al [6]. Ig-submaximal spaces was introduced by Bhavani et.al [3]. The concept of minimal structure and minimal spaces were introduced and studied by maki et.al [10]. Quite recently [11] Ozbakir et.al studied the impact of ideals in minimal spaces and termed as ideal minimal spaces. They have initiated A_m^* , called the minimal local function in ideal minimal spaces. α -generalised closed sets (briefly mI α g-closed sets) in ideal minimal spaces was introduced and some significant properties were studied by Parimala et.al [2]. The concept Locally closed, on mI α g closed sets (briefly mI α glocally m^* -closed sets) was defined by Parimala et.al [12] In this paper we have proved some equivalent conditions of mI α g locally m^* -closed sets. Further we have defined mI α g-submaximal spaces in ideal minimal spaces and discussed significant properties of and mI α g-submaximal spaces. Also we have proved several equivalent conditions on mI α g-submaximal spaces.

2. Preliminaries

Definition 2.1. [9] Let X be a set and is non empty. Let I be the collection of subsets of X which is also non empty. I is referred as an ideal if it satisfies the conditions. Let A, B be any two subsets of I such that (i) $A \in I$ and $B \subset A$ implies $B \in I$ (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

Definition 2.2. [10] Consider a set X and M represents the set of all possible subsets of X. M is termed as the minimal structure if ϕ and X should be the members of M. The minimal spaces we mean the set X with the minimal structure M say (X, M). The elements of M are referred as m-open sets and their complements

[©]Asia Mathematika

^{*}Correspondence: rishwantpari@gmail.com

M.Parimala and D.Arivuoli

are called *m*-closed sets. The interior and closure of *m*-open sets are denoted by *m*-*int* and *m*-*cl* respectively and are defined as m-*int*(A) = \cup { $U : U \subset A, U \in M$ }, m-*cl*(A) = \cap { $F : A \subset F, X - F \in M$ }.

Remark 2.3.[11] The minimal space (X, M) is said to exhibit the property [U] if the union of any number of *m*-open sets is a *m*-open set and the property [I] if the intersection of finite number of *m*-open sets is a *m*-open set.

Definition 2.4. [11] Let P(X) denotes the power set of (X, M, I). The mapping $(.)_m^* : P(X) \longrightarrow P(X)$ leads the definition of the minimal local function A_m^* as $\{x \in X : U_m \cap A \notin I\}$ for all $U_m \in U_m(x)$.

Theorem 2.5. [11] In a minimal space (X, M), let I_1, I_2 be two ideals on X. K_1 and K_2 be subsets of X. Then

- (a) $K_1 \subset K_2 \Rightarrow K_1 m^* \subset K_2 m^*$.
- (b) $K_1 m^* \cup K_2 m^* \subset (K_1 \cup K_2)_m^*$.
- (c) $(K_m^*)_m^* \subset K_m^*$.
- (d) $K_m^* = m \cdot cl(K_m^*) \subset m \cdot cl(K)$.
- (e) $I_1 \subset I_2 \Rightarrow K_m^*(I_2) \subset K_m^*(I_1).$

Remark 2.6. [11] If the ideal minimal space (X, M) includes the property [I], then (b) of Theorem 2.5 satisfies the equality. That is $K_1m^* \cup K_2m^* = (K_1 \cup K_2)_m^*$.

Definition 2.7. [11] The minimal *-closure operator $m \cdot cl^*$ on a subset A of (X, M, I) is defined as the union of A and A_m^* . That is $m \cdot cl^*(A) = A \cup A_m^*$. The minimal structure on $m \cdot cl^*$ is termed as $M^*(I, M)$ which is defined as $M^*(I, M) = \{F \subset X : m \cdot cl^*(X - F) = X - F\}$. The members of M^* are named as m^* -open sets. The interior of m^* -open sets is denoted by $m \cdot int^*(A)$.

Proposition 2.8.[11] Salient features of the minimal * -closure operator m- cl^* are listed below. Let $K, K_1, K_2 \subset X$

- (a) $m cl^*(K_1) \cup m cl^*(K_2) \subset m cl^*(K_1 \cup K_2).$
- (b) If $K_1 \subset K_2$, then $m \cdot cl^*(K_1) \subset m \cdot cl^*(K_2)$.
- (c) $K \subset m \cdot cl^*(K)$.
- (d) $m cl^*(\phi) = \phi$ and $m cl^*(X) = X$.

Remark 2.9. [11] When the ideal minimal space (X, M, I) includes the property [I] then equality holds in (a) of Theorem 2.8. That is $m - cl^*(K_1 \cup K_2) = m - cl^*(K_1) \cup m - cl^*(K_2)$ and also $m - cl^*(m - cl^*(K)) = m - cl^*(K)$ for the subset K.

Definition 2.10. [11] In an ideal minimal space (X, M, I), a subset A is termed as m^* -dense in itself set if A is a subset of A_m^* (briefly $A \subset A_m^*$).

Lemma 2.11.[11] If a subset A is seems to be a m^* dense in itself set in an ideal minimal space, then the following equality holds. $A_m^* = m \cdot cl(A_m^*) = m \cdot cl(A) = m \cdot cl^*(A)$.

Definition 2.12 [4] A subset A of X is defined as a m^* -dense set if $m \cdot d^*(A) = X$.

Definition 2.13. [2] Let A be non empty subset of X, then A is defined to be a mI α g-closed set if $A_m^* \subseteq U$ whenever $A \subseteq U$, U is a α m-open set.

Lemma 2.14. [2] If a set A is a m^* -closed set, then it is be a mI α g-closed set.

Definition 2.15. Consider a subset A of X, then A is defined to be a

- (1) I-locally m^* -closed set [14] if A equals the intersection of a m-open set U and a m^* -closed set F. That is $A = U \cap F$.
- (2) mI α g-locally m^* -closed set [12] if there exists a mI α g-open set U and a m^* -closed set F such that $A = U \cap F$.
- (3) pre-mI-open set [13] if $A \subset m int(m cl^*(A))$.

Lemma 2.16. [4] m^* -dense sets are pre-mI-open sets.

Definition 2.17. [4] A subset A of a minimal space X is termed to be

- (a) m-I-dense if $A_m^* = X$.
- (b) m^* -codense set if (X A) is a m^* -dense set.

Definition 2.18. The ideal minimal space (X, M, I) is defined to be a

- (a) $m \cdot T_1$ -space [15] if there exists two elements x, y of X such that $x \cap y = \phi$, there exists a m-open set P that contains x, but not y and another m-open set Q that contains y, but not x.
- (b) m-I-submaximal space [5] if every m^* -dense subset of X is a m-open set.

3. mI α g-locally m^* -closed set

Some Characterisations of mI α g-locally m^* -closed set are as follows.

Theorem 3.1. The necessary and sufficient conditions of a subset A to be a mI α g-closed set is $m - cl^*(A) \subseteq U$, $A \subset U$ where U is a m-open set.

Proof. Necessity. Consider a mI α g-closed set A and a m-open set U. Since $m - cl^*(A) = A \cup A_m^*$. Also we have $A \subseteq U$, $A_m^* \subset U$ and U is a m-open set. Therefore $m - cl^*(A) \subseteq U$.

Proof. Sufficiency. Let $m \cdot cl^*(A) \subseteq U$, $A \subseteq U$ and U is a m-open set. Since $m \cdot cl^*(A) = A \cup A_m^* \subseteq U$, we get $A, A_m^* \subseteq U, U$ is m-open. Since every m-open set is a α m-open set, $A_m^* \subseteq U, A \subseteq U, U$ is a αm -open set. Therefore, A is a mI α g-closed set.

Theorem 3.2. A *m*-closed set is always a mI α g closed set, equivalently (A *m*-open set is a mI α g-open set.) **Proof.** Consider a αm open set U and let $A \subseteq U$ be a *m*-closed set in X, then m - cl(A) = A, which implies $m - cl(A) \subseteq U$. It is clear that $m - cl^*(A) \subseteq m - cl(A) \subset U$. Since $m - cl^*(A) = A \cup A_m^*$ and $A \subseteq U$ we get $A_m^* \subseteq U$, where U is a α m-open set. Hence A is a mI α g closed set.

Theorem 3.3. If a subset A of (X, M, I) is a I-locally m^* -closed set, then it is a mI α g-locally m^* -closed set and the converse of this theorem may not be true explained in Example 3.4.

Proof. Referring Theorem 3.2, the proof follows from the definition of I-locally m^* -closed set.

Example 3.4. (X, M, I) be a ideal minimal space with $X = \{a, b, c\}$, $M = \{\phi, X, \{a\}, \{b, c\}\}$ and $I = \{\phi, \{c\}\}$. In this example mI α g-locally m^* -closed sets are the elements of the power set of X, but the $\{b\}$ is not a locally m^* -closed set.

Theorem 3.5. Consider the ideal minimal space (X, M, I) and $A \subset X$ is m^* -dense in itself then statements below given are equivalent.

- (a) A is an mI α g-locally m^* -closed set.
- (b) A equals the intersection of a mI α g-open set U and $m cl^*(A)$. That is $A = U \cap m cl^*(A)$ for a mI α g-open set U.
- (c) $m cl^*(A) A$ and $A_m^* A$ are equal and also mI α g closed sets.
- (d) $A \cup (X m cl^*(A))$ and $A \cup (X A_m^*)$ are equal and also mI α g-open sets.
- (e) $A \subset m \operatorname{-int}(A \cup (X A_m^*))$

Proof. (a) \Longrightarrow (b). If A is an mI α g-locally m^* -closed set, then $A = U \cap F$ where U is mI α g-open and F is m^* -closed, that is $F_m^* \subset F$. Since $A = U \cap F$, we have $A \subset U$ and $A \subset m \cdot cl^*(A)$. Therefore $A \subset U \cap m \cdot cl^*(A)$. Since F is m^* -closed and $A \subset F$, $m \cdot cl^*(A) \subset m \cdot cl^*(F)$, which implies $U \cap m \cdot cl^*(A) \subset U \cap m \cdot cl^*(F) \subset U \cap F = A$. Then $A = U \cap m \cdot cl^*(A)$.

 $(b) \implies (c). \text{ Consider } m \cdot cl^*(A) - A = A_m^* - A = A_m^* \cap (X - A) = A_m^* \cap (X - (U \cap m \cdot cl^*(A))) = A_m^* \cap (X - U). \text{ Let } V \text{ be a } m \text{-open set such that } m \cdot cl^*(A) - A \subset V. \text{ Then } A_m^* \cap (X - U) \subset V, \text{ which implies } (X - U) \subset ((X - A_m^*) \cup V). \text{ Since } U \text{ is mI}\alpha\text{g-open set } (X - U) \text{ is a mI}\alpha\text{g-closed set. Therefore by Theorem 3.1, we get } m \cdot cl^*(X - U) \subset ((X - A_m^*) \cup U). \text{ Also } A_m^* \cap m \cdot cl^*(X - U) \subset V. \text{ Consider } A_m^* \cap (X - U) \subset A_m^* \text{ and } A_m^* \cap (X - U) \subset (X - U). \text{ By Theorem 2.5(a)we get } (A_m^* \cap (X - U))_m^* \subset (A_m^*)_m^* \subset A_m^* \text{ and } (A_m^* \cap (X - U))_m^* \subset m \cdot cl^*(X - U). \text{ Therefore } (A_m^* \cap (X - U))_m^* \subset A_m^* \cap m \cdot cl^*(X - U) \subset V. \text{ Also } m \cdot cl^*(A) - A = A_m^* \cap (X - U). \text{ Therefore we get } (m \cdot cl^*(A) - A)_m^* \subset A_m^* \cap m \cdot cl^*(X - U) \subset V. \text{ That is } (m \cdot cl^*(A) - A)_m^* \subset V \text{ and } V \text{ is a } m \text{ open set and hence } V \text{ is a } \alpha m \text{ open set. Finally we have proved that } (m \cdot cl^*(A) - A)_m^* \subset V \text{ whenever } (m \cdot cl^*(A) - A) \subset V, V \text{ is a } \alpha m \text{ open set, which implies } (m \cdot cl^*(A) - A) = A_m^* - A \text{ is a mI}\alpha\text{ g-closed set.}$

 $(c) \Longrightarrow (d) \text{ Since } m - cl^*(A) - A \text{ is mI} \alpha \text{ g-closed}, \ (X - (m - cl^*(A) - A)) \text{ is mI} \alpha \text{ g-open}, \text{ which implies } A \cup (X - m - cl^*(A)) \Rightarrow A \cup (X - (A \cup A_m^*)) \text{ is mI} \alpha \text{ g-open} \text{ and hence } A \cup (X - A_m^*) \text{ is mI} \alpha \text{ g-open}.$

 $(d) \Longrightarrow (e)$ Since $A \subset (A \cup (X - A_m^*))$, $m \text{-} intA \subset m \text{-} int(A \cup (X - A_m^*)))$. Therefore $A \subset m \text{-} int(A) \subset m \text{-} int(A \cup (X - A_m^*)))$ and hence $A \subset m \text{-} int(A \cup (X - A_m^*))$.

 $\begin{array}{l} (e) \Longrightarrow (a) \ \mathrm{By} \ (e) \ \mathrm{we} \ \mathrm{can} \ \mathrm{say} \ A \cup (X - A_m^*) \subset m \ int(A \cup (X - A_m^*)). \ \mathrm{By} \ (d) \ A \cup (X - m \ cl^*(A)) = A \cup (X - A_m^*) \\ \mathrm{is} \ \mathrm{a} \ \mathrm{mI} \ \alpha \mathrm{g} \ \mathrm{open} \ \mathrm{set}. \ \mathrm{Also} \ A \cup (X - m \ cl^*(A)) \cap m \ cl^*(A) = (A \cap m \ cl^*(A)) \cup ((X - m \ cl^*(A)) \cap m \ cl^*(A)) \\ = (A \cap (A \cup A_m^*)) \cup \phi = A \cup (A \cap A_m^*) \cup \phi = A \ \mathrm{since} \ A \ \mathrm{is} \ \mathrm{a} \ m^* \ \mathrm{dense} \ \mathrm{set}. \ \mathrm{Also} \ \mathrm{since} \ A \ \mathrm{is} \ \mathrm{a} \ m^* \ \mathrm{dense} \ \mathrm{set}. \ \mathrm{Also} \ \mathrm{since} \ A \ \mathrm{is} \ \mathrm{a} \ m^* \ \mathrm{dense} \ \mathrm{set}. \ \mathrm{Also} \ \mathrm{since} \ A \ \mathrm{is} \ \mathrm{a} \ m^* \ \mathrm{dense} \ \mathrm{set}. \ \mathrm{Also} \ \mathrm{since} \ A \ \mathrm{is} \ \mathrm{a} \ m^* \ \mathrm{dense} \ \mathrm{set}. \ \mathrm{Also} \ \mathrm{since} \ A \ \mathrm{is} \ \mathrm{a} \ \mathrm{since} \ A \ \mathrm{since} \ \mathrm{since} \ \mathrm{since} \ A \ \mathrm{since} \ A \ \mathrm{since} \ A \ \mathrm{since} \ A \ \mathrm{since} \ \mathrm{since} \ A \ \mathrm{since} \ A \ \mathrm{since} \ A \ \mathrm{since} \ \mathrm{since} \ \mathrm{since} \ \mathrm{since} \ A \ \mathrm{since} \ \mathrm{$

Theorem 3.6. If G is a m-open subset of the ideal minimal space (X, M, I), then G is mI αg -locally m^* -closed set, but the converse need not be true.

Proof. Lemma 2.14 and Theorem 3.2 proves the Theorem.

Example 3.7. Let the ideal minimal space with $X = \{a, b, c\}$, $M = \{\phi, X, \{a\}, \{b, c\}\}$ and $I = \{\phi, \{c\}\}$. In this example mI α g-locally m^* -closed sets are the elements of the power set of X, but the $\{b\}$ is not a m-open set.

Theorem 3.8. A mI αg -locally m^* -closed set which is also a m-I-dense set, is a mI αg -open set.

Proof. Referring Theorem 3.5(d) if a set A is a mI αg -locally m^* -closed set then $A \cup (X - m - cl^*(A))$ is a mI αg -open set. By the definition of m-I-dense set we get $A_m^* = X$. Therefore m- $cl^*(A) = A \cup A_m^* = X$, which implies $A \cup (X - X) = A$ is a mI αg -open set.

Corollary 3.9. Let A be an m-I-dense subset of X, then A is a mI αg -locally m^* -closed set if and only of A is a mI αg -open set.

Theorem 3.10. Let (X, M, I) be an ideal minimal space satisfying property [I], then we can prove the equivalent statements on mI αg -locally m^* -closed sets.

- (a) Every subset of X is a mI αg -locally m^* -closed set.
- (b) Every m^* -dense set a mI αg -open set.

Proof. $(a) \Longrightarrow (b)$ The proof follows from Theorem 3.5(d).

 $(b) \Longrightarrow (a)$ Consider a subset K of X. Let $S = K \cup (X - m \cdot cl^*(K))$. Then $m \cdot cl^*(S) = m \cdot cl^*(K \cup (X - m \cdot cl^*(K))) = (K \cup (X - m \cdot cl^*(K)) \cup (K \cup (X - m \cdot cl^*(K)))_m^* = (K \cup (X - m \cdot cl^*(K))) \cup K_m^* \cup (X - m \cdot cl^*(K))_m^* = m \cdot cl^*(K) \cup m \cdot cl^*(X - m \cdot cl^*(K)) = m \cdot cl^*(K) \cup (X - m \cdot cl^*(K)) = X$. That is we have proved $m \cdot cl^*(S) = X$. Therefore by Definition 2.12 S is a m^* -dense set. By (b) S is a mI αg -open set. Therefore by Theorem 3.5(d), K is a mI αg -locally m^* -closed set. Theorem 3.11. Let (X, M, I) be an ideal minimal space satisfying the property [U] and $A \subset X$, is a m^* -dense set. The necessary and sufficient condition that the set A is a mI αg -locally m^* -closed set is $A \cap (A_m^* - A)_m^*$ is a mI αg -open set.

Proof. Let $A \subset X$. Consider $(m \cdot cl^*(A) \cap (X - A))_m^* - (m \cdot cl^*(A) \cap (X - A)) = (m \cdot cl^*(A) \cap (X - A))_m^* \cap (X - (m \cdot cl^*(A) \cap (X - A))) = m \cdot cl^*(A) \cap (X - A))_m^* \cap ((X - m \cdot cl^*(A)) \cup A) = (m \cdot cl^*(A) \cap (X - A))_m^* \cap (X - m \cdot cl^*(A)) \cup (m \cdot cl^*(A) \cap (X - A)_m^* \cap A) = \phi \cup (m \cdot cl^*(A) - A)_m^* \cap A = (A_m^* - A)_m^* \cap A$ by Theorem 3.5(c) A is a mI αg -locally m^* -closed set implies $m \cdot cl^*(A) - A = m \cdot cl^*(A) \cap (X - A)$ is a mI αg -closed set. Hence $(m \cdot cl^*(A) \cap (X - A))_m^* - (m \cdot cl^*(A) \cap (X - A))$ is a mI αg -open set. That is $(A_m^* - A)_m^* \cap A$ is a mI αg -open set.

4. mI α g-Submaximal spaces

Definition 4.1. An ideal minimal space (X, M, I) is said to be a mI α g-submaximal space if every m^* -dense subset in X is a mI α g-open set.

Theorem 4.2. Every mI-submaximal space is a mI α g-submaximal space, but the converse of this statement may not be true.

Proof. Consider a m^* -dense set A of a mI-submaximal space X. By the definition of mI-submaximal space A is a m-open set. By Theorem 3.2, A is a mI α g-open set in X. Therefore (X, M, I) is a mI α g-submaximal space.

Example 4.3. Consider the ideal minimal space (X, M, I) with $X = \{a, b, c, d\}$ and $M = \{\phi, X, \{a, b\}, \{b, c\}, \{a, c, d\}\}$ and the ideal $I = \{\phi, \{c\}\}$. m^* -dense sets are $\{\{a, b\}, \{a, b, c\}, \{a, b, c\}\}$. In this example (X, M, I) is a mI α gsubmaximal space, but not a mI-submaximal space since $\{a, b, d\}$ is a m^* -dense set, but not an m-open set.

Lemma 4.4. When (X, M, I) represents a ideal minimal space and $A \subset M$, then below said statements are equivalent.

(a) A is a mI α g-closed set.

- (b) For a *m*-open set U of X, $m cl^*(A) \subset U, A \subset U$.
- (c) Let $x \in m cl^*(A)$, $m cl(x) \cap A$ is non empty.
- (d) $m cl^*(A) A$ does not have non empty *m*-closed sets.
- (e) $A_m^* A$ does not have non empty *m*-closed sets.

Theorem 4.5. If (X, M, I) is a m- T_1 ideal space and A is a m^* -dense in itself set and mI α g-closed subset of X, then A is a m-closed set.

Proof. Let A be m^* -dense in itself set and mI α g-closed subset of X. Then by Lemma 4.4 there exists no non empty m-closed set in m- $cl^*(A) - A$. Also since X is a m- T_1 , A is a m^* -closed set we have m- $cl^*(A) - A = \phi$. A is a m^* -closed set implies m- $cl^*(A) = m$ -cl(A). Therefore m- $cl(A) - A = \phi$ which implies m-cl(A) = A. Hence A is a m-closed set.

Lemma 4.6 In a ideal minimal space (X, M, I) if a subset A is a pre-m-I-open set, then A can be expressed as $A = G \cap B$, where G is a m-open set and B is a m^{*}-dense set.

Proof. Consider a pre-m-I-open set A, we have $A \subseteq m - int(m - cl^*(A) = U$ where U is a m-open set. Let $D = X - (U - A) = X - (U \cap A^c) = X \cap (U \cap A^c)^c = X \cap (U^c \cup A) = (U^c \cup A) = (X - U) \cup A$. To prove D is a m^* -dense set it is enough to prove $m - cl^*(D) = X$. That is $m - cl^*((X - U) \cup A) \supseteq m - cl^*(X - U) \cup m - cl^*(A) \supseteq (X - m - cl^*(A) \cup m - cl^*(A) = X$. Therefore D is m^* -dense set. Also $U \cap D = U \cap ((X - U) \cup A) = (U \cap (X - U)) \cup (U \cap A) = \phi \cup (U \cap A) = \phi \cup A = A$ here $A \subseteq U$. That is $A = U \cap D$ such that U is a m-open set and D is a m^* -dense set.

Remark 4.7. Property [j] refers "union of two mI α g-closed sets is a mI α g-closed set" and property [v] refers "For any two mI α g-closed sets A and B, $A \cap B$ is also a mI α g-closed set".

Theorem 4.8. Let (X, M, I) be the ideal minimal space satisfying property [v] then statements below which are equivalent.

- (a) (X, M, I) is a mI α g-submaximal space.
- (b) If A is a pre-m-I-open set, then A is a mI α g-open set.

Proof. $(a) \Longrightarrow (b)$. Let (X, M, I) is a mI α g-submaximal space and $A \subset X$ be a pre-m-I-open set. By Lemma 4.6 $A = U \cap D$, U is a m-open set and D is a m^* -dense set. Since X is a mI α g-submaximal space and D is a mI α g-open set in X and U is a m-open set, implies U is a mI α g-open by Theorem 3.2, therefore A is a mI α g-open set.

 $(b) \Longrightarrow (a)$. Let A be m^* -dense subset of X, then by Lemma 2.16 A is a pre-mI-open set. By hypothesis A is a mI α g-open set. Therefore X is a mI α g-submaximal space.

Theorem 4.9. Let (X, M, I) be the ideal minimal space satisfying property [v] then the following statements are equivalent.

- (a) (X, M, I) is a mI α g-submaximal space.
- (b) If A is a subset of X, then A is a mI α g-locally m^* -closed set.
- (c) Any m^* -dense subset of X is the intersection of a m^* -closed set and a mI α g-open subset of X.

Proof. $(a) \Longrightarrow (b)$. Let (X, M, I) be a mI α g-submaximal space, by definition of mI α g-submaximal space every m^* -dense set is a mI α g-open set. Referring Theorem 3.10, every subset is a mI α g-locally m^* -closed set. $(b) \Longrightarrow (c)$. Let A be a m^* -dense set, by (a) of this theorem A is mI α g-locally m^* -closed set. Theorem 3.5(b) explains, there exists a mI α g-open set U such that $A = U \cap m \cdot cl^*(A)$. Consideration of A as a m^* -dense set we inferred that $m \cdot cl^*(A) = X$. Hence $A = U \cap m \cdot cl^*(A) = U \cap X = U$ and U is a mI α g-open set in X. $(c) \Longrightarrow (a)$. Let A be m^* -dense set in (X, M, I), by (c) $A = U \cap E$, U is a mI α g-open set and E is a m^* -closed set. Since $A \subset E$, E is m^* -dense set. That is $m \cdot cl^*(E) = X$. Since E is a m^* -closed set $m \cdot cl^*(E) = E = X$. Hence $A = U \cap E = U \cap X = U$ and it is a mI α g-open set. Therefore (X, M, I) is mI α g-submaximal space. **Theorem 4.10.** For an ideal minimal space, the following statements are equivalent.

- (a) (X, M, I) is a mI α g-submaximal space.
- (b) Whenever the subset A is not a mI α g-open set, we can prove $A (m int(m cl^*(A))) \neq \phi$.

Proof. $(a) \implies (b)$. Assume the contrary that $A - (m - int(m - cl^*(A))) = \phi$. Therefore $A \subset (m - int(m - cl^*(A)))$, means A is a pre-mI-open set. Since X is a mI α g-submaximal space, by Theorem 4.8, A is mI α g-open. Which is a contradiction to our assumption that A is not a mI α g-open set. Therefore $A - (m - int(m - cl^*(A)))$ is non empty.

 $(b) \Longrightarrow (a)$. Consider a pre-mI-open set A which is not a mI α g-open set, then by $(b) A - (m - int(m - cl^*(A)))$ is non empty, which implies $A \not\subseteq (m - int(m - cl^*(A)))$. That is A may not be a pre-mI-open set. Which contradicts to our assumption that A is Pre-mI-open. Therefore A is a mI α g-open set and hence referring Theorem 4.8 X is mI α g-submaximal space.

Theorem 4.11. Consider an ideal minimal space (X, M, I) with the property [v], then it is possible for the equivalent statements on mI α g-submaximal spaces.

- (a) (X, M, I) is a mI α g-submaximal space.
- (b) The family of all mI α g-open sets ζ such that $\zeta = \{U A : U \text{ is mI}\alpha$ g-open and $m \text{-}int^*(A) = \phi\}$.

Proof. $(a) \Longrightarrow (b)$. Let $X \mod \alpha$ g-submaximal space. Construct a σ as $\sigma = \{U - A : U \text{ is mI} \alpha$ g-open and m-int^{*} $(A) = \phi\}$. Our aim is to prove $\sigma = \zeta$. Consider an element $G \in \zeta$. Since $G = G - \phi$ and m-int^{*} $(\phi) = \phi$, $G \in \sigma$.

Hence
$$\zeta \subset \sigma$$
.—(1)

Let $G \in \sigma$. It is sufficient to prove G is a mI α g-open set. Since $G \in \sigma$, G can be written as G = U - A such that U is a mI α g-open set and m-int^{*}(A) = ϕ . Also $G = U - A = U \cap (X - A)$. Since m-int^{*}(A) = ϕ , X - (m-int^{*}(X - A)) = m- $cl^*(A) = X$. That is (X - A) is a m^* -dense set. Since X is a mI α g-submaximal space, (X - A) is a m^* -dense set implies (X - A) is a mI α g-open set. Hence $G = U \cap (X - A)$ is a mI α g-open set and so

$$\sigma \subset \zeta . -----(2)$$

combining equations (1) and (2) we have proved $\sigma = \zeta$. Hence (b) can be followed.

 $(b) \implies (a)$. Consider A be a pre-mI-open set. With reference of Lemma 4.6. A can be written as the intersection of the sets G and B such that G is a m-open set and B is a m^* -dense set. Therefore m- $cl^*(B) = X$ and so m- $int^*(X - B) = \phi$. That is $A = G \cap B = G - (X - B)$ and m- $int^*(X - B) = \phi$. By Theorem 3.2 G is a mI α g-open set. Therefore $A \subset \zeta$ and hence A is a mI α g-open-set. That is assumption of

the pre-mI-open set A leads that A is mI α g-open. Hence Theorem 4.8. infers that X is a mI α g-submaximal space.

Theorem 4.12. Let (X, M, I) be an ideal minimal space satisfying the property [I] then the equivalent statements on mI α g-submaximal spaces are as follows.

- (a) X is a mI α g-submaximal space.
- (b) There exists a mI α g-closed set $m cl^*(A) A$ for every subset A of X.

Proof. $(a) \Longrightarrow (b)$. Consider a mI α g-submaximal space (X, M, I) and let $A \subset X$. To prove $m \cdot cl^*(A) - A$ is mI α g-closed set is sufficient to prove $X - (m \cdot cl^*(A) - A)$ is mI α g-open. We need to prove $X - (m \cdot cl^*(A) - A)$ is a m^* -dense set. It is necessary to prove that $m \cdot cl^*(X - (m \cdot cl^*(A) - A)) = X$. Proceeding as, $m \cdot cl^*(A \cup (X - (m \cdot cl^*(A)))) = m \cdot cl^*(A) \cup m \cdot cl^*(X - (m \cdot cl^*(A))) = X$. Therefore $(X - (m \cdot cl^*(A) - A))$ is a m^* -dense set. Also since X is a mI α g-submaximal space, by the definition of mI α g-submaximal space every m^* -dense set is a mI α g-open set. Hence $(X - (m \cdot cl^*(A) - A))$ is a mI α g-open set. Therefore $(m \cdot cl^*(A) - A)$ is a mI α g-closed set.

 $(b) \Longrightarrow (a)$. Let $(m - cl^*(A) - A)$ be a mI α g-closed set and let $A \subset X$ be a m^* -dense set in (X, M, I). Therefore $m - cl^*(A) = X$, implies (X - A) is a mI α g-closed set. So A is mI α g-open. (X, M, I) is mI α g-submaximal space.

Theorem 4.13. Consider a m^* -dense subset A, which is also a m^* -dense in itself set in a ideal minimal space (X, M, I), then the equivalent statements are as follows.

- (a) (X, M, I) is a mI α g-submaximal space.
- (b) $A \cap (A_m^* A)_m^*$ is a mI α g-open set for every $A \subset X$.

Proof. $(a) \Longrightarrow (b)$. Let (X, M, I) is a mI α g-submaximal space. By Theorem 4.9, every subset of A of X is a mI α g-locally m^* -closed set. Then by Theorem 3.11 $A \cap (A_m^* - A)_m^*$ is a mI α g-open set in X.

 $(b) \Longrightarrow (a)$ By hypothesis $A \cap (A_m^* - A)_m^*$ is mI α g-open for every $A \subset X$. Since A is a m^* -dense set we have $m \cdot cl^*(A) = X$. So that $A_m^* - A = m \cdot cl^*(A) - A = X - A$. Hence $A \cap (A_m^* - A)_m^* = A \cap (X - A)_m^* = (X - A)_m^* - (X - A)$ is a mI α g-open set and hence (X - A) is a mI α g-closed set, implies A is a mI α g-open set. Therefore (X, M, I) mI α g-submaximal space.

Theorem 4.14. For a topological space with minimal structure M and the ideal I, then the following statements are equivalent.

- (a) (X, M, I) is a mI α g-submaximal space.
- (b) If a subset A is a m^* -codense subset of X, then it is a mI α g-closed set.

Proof. $(a) \Longrightarrow (b)$. Let A be a m^* -codense set, then (X - A) is a m^* -dense set. By Theorem 4.13, (X - A) is a mI α g-open set. Hence A is a mI α g-closed set.

 $(b) \Longrightarrow (a)$. Since A is a m^* -codense set (X - A) is a m^* -dense set and so (X - A) is a mI α g-open set. Therefore by Theorem 4.13 (X, M, I) is a mI α g-submaximal space.

Theorem 4.15. Let (X, M, I) be an ideal minimal space, where I is a m-codense ideal. If every subset is m-I-locally -m-closed, then (X, M, I) is a $mI\alpha g$ -submaximal space.

Proof. Let A be m^* -dense set. Since I is m-codense, A is m-I-dense and m-I-locally -m-closed, then A is

M.Parimala and D.Arivuoli

m-open and hence $mI\alpha g$ -open. Therefore X is $mI\alpha g$ -submaximal space.

Theorem 4.16. In a $mI\alpha g$ -submaximal space (X, M, I) if for any two ideals I, I' such that $I \subset I'$, then (X, M, I') is a $mI'\alpha g$ -submaximal space.

Proof. Let A be $m^*(I')$ -dense subset in (X, M, I'), then $A \cup A_m^*(I') = X$. As $I \subset I'$ we get $A_m^*(I') \subset A_m^*(I)$, which implies that $X = A \cup A_m^*(I') \subset A \cup A_m^*(I)$. That is $A \cup A_m^*(I) = X$. Thus A is a $m^*(I)$ -dense set. As (X, M, I) is $mI\alpha g$ -submaximal, A is $mI\alpha g$ -open. Since $I \subset I'$, A is $mI'\alpha g$ -open. Therefore (X, M, I') is $mI\alpha g$ -submaximal space.

5. Conclusion

In this article we have discussed some salient features of $mI\alpha g$ -locally m^* -closed sets. We have introduced a new submaximality called $mI\alpha g$ -submaximality in ideal minimal spaces and studied its significant features. Equivalence of $mI\alpha g$ -submaximality with Pre-mI-open sets, $mI\alpha g$ -locally m^* -closed sets, m^* -codense sets are given. Heredity nature of ideals are imported under $mI\alpha g$ -submaximality. Future work of this article will be in hyper connectedness and $mI\alpha g$ -submaximality.

References

- [1] A.V.Arhangel'skii and P.J.Collins, On submaximal spaces, Topology Appli. 64 (3)(1995), 219-241.
- [2] D.Arivuoli, M.Parimala, On α generalised closed sets in ideal minimal spaces, ASIA LIFE SCIENCES, Supplement 14. No.1, March 2017, 85-92.
- [3] K. Bhavani and D.Sivaraj Ig-Submaximal Spaces, Bol. Soc. Paran. Mat. (3s.) v. 33 1 (2015): 105-110.
- [4] R.Chitra m*-extremally disconnected ideal m-spaces. International Journal of Advances in Pure and Applied Mathematics, 1(3)(2011), 39-51.
- [5] Properties of m-I-submaximal ideal minimal spaces, Communicated.
- [6] Erdal Ekici and Takashi Noiri, Properties of I-submaximal ideal topological spaces, Filomat, 24:4 (2010), 87-94.
- [7] E.Hewit, A problem of set theoretic topology, Duke Math. J., 10 (1943), 309-333.
- [8] D. Jankovi'c and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [9] K.Kuratowski, Topology, Vol. I. Academic Press, New york, 1996.
- [10] H.Maki, J.Umehara, T.Noiri. Every Topological space in pre T(1/2). Mem. Fac. Sci. Kochi Univ. Ser. A Math., 1996, 17:33-42.
- [11] O.B.Ozbakiri and E.D.Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar., 125(3)(2009), 227-235.
- [12] M.Parimala, D.Arivuoli and R. Perumal "On some locally closed sets in ideal minimal spaces" Inter national Journal of Pure and Applied Mathematics, Volume 113 No. 12, 2017, 230 – 238.
- [13] M. Parimala and A. Selvakumar, ON α, semi, β-open sets minimal ideal topological spaces, Annales Univ. Sci. Budapest. Sect. Math., 60 (2017), 77 84.
- [14] O.Ravi,S.Tharmar,S.Ganesan, Some Locally closed sets in ideal minimal spaces, International Journal of Advances in Pure and Applied mathematics, Volume I Issue1(2011), pages 89-105.
- [15] Takashi NOIRI and Valeriu POPA, On m-D-Separation Axioms. Istanbul Univ. Fen. Fak. Mat. Dergirsi, 61-62(2002-2003), 15-28.
- [16] R. Vaidyanathaswamy, The localization theory in Set Topology, Proc. Indian Acad. Sci., 20 (1945), 51 61.