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Abstract: The purpose of this paper is to cultivate the group theory by means of neutrosophic soft sense in a different

way. The concepts of neutrosophic soft coset, neutrosophic normal soft group, neutrosophic soft quotient group, direct

product of neutrosophic soft groups and simple neutrosophic soft group have been presented in a new approach. These

are illustrated by suitable examples. Their structural characteristics are investigated here in the parlance of group theory

in classical sense. Two kinds of composition namely binary composition ‘◦ ’ between the elements of a classical group and

neutrosophic soft composition / neutrosophic soft product ‘o ’ between the neutrosophic soft elements of neutrosophic

soft groups are used to practice here. Following the classical group theory, the concepts have been developed by using

the neutrosophic soft composition directly.

Key words: Neutrosophic soft coset, Neutrosophic normal soft group, Neutrosophic soft quotient group, Direct product,

Simple neutrosophic soft groups.

1. Introduction

Molodtsov [13] brought an opportunity to handle the uncertainty more precisely by introducing ‘Soft set theory’.

Researchers in several real fields deal daily with the complexities of modeling uncertain data. There are

different useful tools like probability theory, theory of fuzzy set [19], intuitionistic fuzzy set [3] etc to describe

uncertainty. But the parametrization inadequacy makes all these efforts unfruitful. In that ground, soft set

theory is remarkable because of it’s parametrization adequacy. Several authors [1, 2, 14, 15, 17, 18] extended

the different algebraic structures over fuzzy set, intuitionistic fuzzy set and soft set.

A more generalisation of classical sets, fuzzy set, intuitionistic fuzzy set is ‘neutrosophic set’ (NS)

revealed by Smarandache [16]. It is recently being practiced in development of various mathematical structures

and decision making. The decision makers can get an opportunity to include their hesitation in decision making

by this theory. Intuitionistic fuzzy set theory can not meet that point. Another advantage of NS theory over

intuitionistic fuzzy set is that the characters representing an object are independent and appear explicitly. The

combination of NS and soft set was given first by Maji [12] and thus the notion of ‘neutrosophic soft set’ (Nss)

was brought to light. This concept has been practiced by several researchers [4–11] to develop different tracks

of mathematics.

This paper helps to investigate the characteristics related to neutrosophic soft group in a new direction.

After given some preliminary useful definitions in Section 2, the study is moved to Section 3 to state the main

results. Here, the concept of neutrosophic soft coset, neutrosophic normal soft group, neutrosophic soft quotient

group, direct product of neutrosophic soft groups and simple neutrosophic soft group are introduced in a new
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direction following the sense of classical group theory. Finally, the Section 4 deals the present work at a glance.

2. Preliminaries

We recall some necessary definitions and results to make out the main thought.

Definition 2.1. [4] A continuous t - norm ∗ and t - conorm � are two continuous binary operations assigning

[0, 1]× [0, 1]→ [0, 1] and obey the under stated principles :

(i) ∗ and � are both commutative and associative.

(ii) u ∗ 1 = 1 ∗ u = u and u � 0 = 0 � u = u, ∀u ∈ [0, 1].

(iii) u ∗ v ≤ p ∗ q and u � v ≤ p � q if u ≤ p, v ≤ q with u, v, p, q ∈ [0, 1].

u ∗ v = uv, u ∗ v = min{u, v}, u ∗ v = max{u+ v − 1, 0} are most useful t -norms and

u � v = u+ v − uv, u � v = max{u, v}, u � v = min{u+ v, 1} are most useful t -conorms.

Definition 2.2. [13] A soft set on an initial universe X is presented by a pair (M,D) where D ⊆ E , the

parametric set and M maps D → ℘(X), the power set of X .

Definition 2.3. [16] An NS Q on an initial universe X is presented by three characterisations namely true

value TQ , indeterminant value IQ and false value FQ so that TQ, IQ, FQ : X →]−0, 1+[ . Thus Q can be

designed as : {< u, (TQ(u), IQ(u), FQ(u)) >: u ∈ X} with −0 ≤ supTQ(u) + sup IQ(u) + supFQ(u) ≤ 3+ . Here

1+ = 1 + δ , where 1 is standard part and δ is non-standard part. Similarly −0 = 0− δ . The non-standard set

]−0, 1+[ is basically practiced in philosophical ground and because of the difficulty to adopt it in real field, the

standard subset of ]−0, 1+[ i.e., [0,1] is applicable in real neutrosophic environment.

Definition 2.4. [12] An Nss on an initial universe X is presented by a pair (N,B) where B ⊆ E , the

parametric set and N maps B → NS(X), the set of all NS s of X .

Deli and Broumi [11] proposed this notion in a new look.

Definition 2.5. [11] An Nss Q on (X,E), X being the universe set and E being the parametric set, is

presented by an ordered pair (e, fQ(e)), e ∈ E where fQ maps E → NS(X), the set of all NS s on X and is

given by fQ(e) = {< u, (TfQ(e)(u), IfQ(e)(u), FfQ(e)(u)) >: u ∈ X} with TfQ(e)(u), IfQ(e)(u), FfQ(e)(u) ∈ [0, 1]

and 0 ≤ TfQ(e)(u) + IfQ(e)(u) + FfQ(e)(u) ≤ 3.

Definition 2.6. [5] Consider two Nss P and Q on the common universe U via parametric set E . Then,

1. P is called neutrosophic soft subset of Q , denoted as P ⊆ Q , when

TfP (e)(u) ≤ TfQ(e)(u), IfP (e)(u) ≥ IfQ(e)(u), FfP (e)(u) ≥ FfQ(e)(u),∀e ∈ E, u ∈ X .

2. the ‘AND’ operation (P ∧Q) is also an Nss and is defined by :

M = {[(e, e′), {< u, TfM (e,e′)(u), IfM (e,e′)(u), FfM (e,e′)(u) >: u ∈ X}] : (e, e′) ∈ E × E}
where TfM (e,e′)(u) = TfP (e)(u) ∗ TfQ(e′)(u), IfM (e,e′)(u) = IfP (e)(x) � IfQ(e′)(u) and

FfM (e,e′)(u) = FfP (e)(u) � FfQ(e′)(u).

3. the ‘OR’ operation (P ∨Q) is also an Nss and is defined by :

K = {[(e, e′), {< u, TfK(e,e′)(u), IfK(e,e′)(u), FfK(e,e′)(u) >: u ∈ X}] : (e, e′) ∈ E × E}
where TfK(e,e′)(u) = TfP (e)(u) � TfQ(e′)(u), IfK(e,e′)(u) = IfP (e)(u) ∗ IfQ(e′)(u) and

FfK(e,e′)(u) = FfP (e)(u) ∗ FfQ(e′)(u).
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Definition 2.7. [6] An Nss function (ψ, ξ) is presented by (X,E) −→ (Y,E) where ψ : X → Y and ξ : E → E .

Define two Nss P on (X,E) and Q on (Y,E). Then,

(1) the image of P under (ψ, ξ) is an Nss (ψ, ξ)(P ) on (Y,E) and it is defined as : (ψ, ξ)(P ) = {<
ξ(a), fψ(P )(ξ(a)) >: a ∈ E} where ∀b ∈ ξ(E),∀v ∈ Y ,

Tfψ(P )(b)(v) =

{
maxψ(u)=v maxξ(a)=b [TfP (a)(u)], foru ∈ ψ−1(v)
0 , otherwise.

Ifψ(P )(b)(v) =

{
minψ(u)=v minξ(a)=b [IfP (a)(u)], foru ∈ ψ−1(v)
1 , otherwise.

Ffψ(P )(b)(v) =

{
minψ(u)=v minξ(a)=b [FfP (a)(u)], foru ∈ ψ−1(v)
1 , otherwise.

(2) the pre-image of Q under (ψ, ξ), is an Nss (ψ, ξ)−1(Q) on (X,E) and it is defined as, ∀a ∈ ξ−1(E),∀u ∈ X ,

Tfψ−1(Q)(a)
(u) = TfQ[ξ(a)](ψ(u)), Ifψ−1(Q)(a)

(u) = IfQ[ξ(a)](ψ(u)), Ffψ−1(Q)(a)
(u) = FfQ[ξ(a)](ψ(u)).

(ψ, ξ) is injective (surjective) when ψ and ξ both are injective (surjective).

Definition 2.8. [4] The neutrosophic soft product of Nss P and Q defined on a groupoid G is denoted by

PoQ and it is also an Nss S defined as, for (a, b) ∈ E × E andu ∈ G ,

TfS(a,b)(u) =

{
maxu=xv[TfP (a)(x) ∗ TfQ(b)(v)]
0 ifu can not be put as u = xv.

IfS(a,b)(u) =

{
minu=xv[IfP (a)(x) � IfQ(b)(v)]
1 ifu can not be put as u = xv.

FfS(a,b)(u) =

{
minu=xv[FfP (a)(x) � FfQ(b)(v)]
1 ifu can not be put as u = xv.

Definition 2.9. [8] 1. The null Nss on (X,E) is denoted by φX and is defined by (fφX (e))(u) = (0, 1, 1),∀e ∈
E,∀u ∈ X .

2. The absolute Nss on (X,E) is denoted by 1X and is defined by (f1X (e))(u) = (1, 0, 0),∀e ∈ E,∀u ∈ X .

Clearly, φcX = 1X and 1cX = φX .

Definition 2.10. [8] 1. An NS (e, fQ(e)), e ∈ E in an Nss Q over (X,E) is called a neutrosophic soft point

denoted by eQ , if fQ(e) /∈ φX and fQ(e′) ∈ φX ∀e′ ∈ E − {e} .

2. The complement of eQ is also a neutrosophic soft point ecQ such that f cQ(e) = (fQ(e))c hold.

3. A neutrosophic soft point eQ ∈ P , an Nss if fQ(e) ≤ fP (e) for e ∈ E .

Definition 2.11. [5] An NS Q defined on a crisp group (G, ◦) is called a neutrosophic subgroup of (G, ◦)
with respect to the following sets of condition.

(i)

 TQ(u ◦ v) ≥ TQ(u) ∗ TQ(v)
IQ(u ◦ v) ≤ IQ(u) � IQ(v)
FQ(u ◦ v) ≤ FQ(u) � FQ(v), ∀u, v ∈ G.

(ii)

 TQ(u−1) ≥ TQ(u)
IQ(u−1) ≤ IQ(u)
FQ(u−1) ≤ FQ(u), ∀u ∈ G.

An Nss Q on ((G, ◦), E) will be a neutrosophic soft group (NSG) if fQ(e) is a neutrosophic subgroup of (G, ◦),

∀e ∈ E .

Over ((G, ◦), E), an NSG P is called a neutrosophic soft subgroup of another NSG Q if P ⊆ Q .
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3. Main Result

Earlier, we have defined the left and right neutrosophic soft coset (NSC) of an Nss P over a classical group G

in the paper [6]. Here we shall extend this concept for a neutrosophic soft subgroup M of an NSG P .

Through out the study, unless otherwise stated we shall treat G as a classical group and E as a parametric set.

Definition 3.1. Over ((G, ◦), E), define two NSGs M,P with M ⊆ P and e1, e2 ∈ E . Then for a fixed but

arbitrary neutrosophic soft element fP (e1) ∈ P , the left NSC of M in P is :

fP (e1)oM = {fP (e1)ofM (e2) : fM (e2) ∈M}

= {< u, (TfL(e1,e2)(u), IfL(e1,e2)(u), FfL(e1,e2)(u)) >u∈G: fM (e2) ∈M}

for fL(e1, e2) = fP (e1)ofM (e2)

Similarly, for fP (e1) ∈ P , the right NSC of M in P is :

MofP (e1) = {fM (e2)ofP (e1) : fM (e2) ∈M}

= {< u, (TfQ(e2,e1)(u), IfQ(e2,e1)(u), FfQ(e2,e1)(u)) >u∈G: fM (e2) ∈M}

for fQ(e2, e1) = fM (e2)ofP (e1)

Example 3.1. Let us consider two NSGs M,P over (G,E) given in Table 1 and Table 2, respectively with

respect to t-norm u ∗ v = uv and s-norm u � v = u + v − uv where G = ({1, ω, ω2}, ·) is the multiplicative

group of cube root of unity and E = {a, b, c} .

Table 1. Table for NSG M .
fM (a) fM (b) fM (c)

1 (0.5, 0.6, 0.4) (0.3, 0.6, 0.7) (0.2, 0.3, 0.4)
ω (0.4, 0.7, 0.4) (0.3, 0.8, 0.6) (0.5, 0.2, 0.6)
ω2 (0.3, 0.8, 0.5) (0.4, 0.6, 0.7) (0.3, 0.3, 0.4)

Table 2. Table for NSG P .
fP (a) fP (b) fP (c)

1 (0.9, 0.6, 0.2) (0.5, 0.4, 0.1) (0.4, 0.3, 0.3)
ω (0.7, 0.5, 0.4) (0.4, 0.5, 0.3) (0.5, 0.2, 0.4)
ω2 (0.8, 0.7, 0.3) (0.5, 0.6, 0.2) (0.6, 0.2, 0.3)

Clearly, M is a neutrosophic soft subgroup of P . The left NSC of M in P is {fP (a)oM, fP (b)oM, fP (c)oM}
and it is given by Table 3.

For convenience of Table 3, the result of ω2 in fP (a)ofM (b) is provided. u ∗ v = min{u, v} and
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u � v = max{u, v} are considered to prepare Table 3 and Table 4.

TfL(a,b)(ω
2) = max{TfP (a)(1) ∗ TfM (b)(ω

2), TfP (a)(ω
2) ∗ TfM (b)(1), TfP (a)(ω) ∗ TfM (b)(ω)}

= max{min(0.9, 0.4),min(0.8, 0.3),min(0.7, 0.3)} = max{0.4, 0.3, 0.3} = 0.4

IfL(a,b)(ω
2) = min{IfP (a)(1) � IfM (b)(ω

2), IfP (a)(ω
2) � IfM (b)(1), IfP (a)(ω) � IfM (b)(ω)}

= min{max(0.6, 0.6),max(0.7, 0.6),max(0.5, 0.8)} = min{0.6, 0.7, 0.8} = 0.6

FfL(a,b)(ω
2) = min{FfP (a)(1) � FfM (b)(ω

2), FfP (a)(ω
2) � FfM (b)(1), FfP (a)(ω) � FfM (b)(ω)}

= min{max(0.2, 0.7),max(0.3, 0.7),max(0.4, 0.6)} = min{0.7, 0.7, 0.6} = 0.6

Similarly, the right NSC of M in P is {MofP (a),MofP (b),MofP (c)} and is given by Table 4.

Table 3. Table for left NSC of M in P
fP (a)ofM (a) fP (a)ofM (b) fP (a)ofM (c)

1 (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.5, 0.4)
ω (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.5, 0.4)
ω2 (0.5, 0.7, 0.4) (0.4, 0.6, 0.6) (0.5, 0.5, 0.4)

fP (b)ofM (a) fP (b)ofM (b) fP (b)ofM (c)
1 (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.4, 0.4)
ω (0.4, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.4, 0.4)
ω2 (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.4, 0.4, 0.4)

fP (c)ofM (a) fP (c)ofM (b) fP (c)ofM (c)
1 (0.4, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.2, 0.4)
ω (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.4, 0.3, 0.4)
ω2 (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.2, 0.4)

Table 4. Table for right NSC of M in P

fM (a)ofP (a) fM (b)ofP (a) fM (c)ofP (a)
1 (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.5, 0.4)
ω (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.5, 0.4)
ω2 (0.5, 0.7, 0.4) (0.4, 0.6, 0.6) (0.5, 0.5, 0.4)

fM (a)ofP (b) fM (b)ofP (b) fM (c)ofP (b)
1 (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.4, 0.4)
ω (0.4, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.4, 0.4)
ω2 (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.4, 0.4, 0.4)

fM (a)ofP (c) fM (b)ofP (c) fM (c)ofP (c)
1 (0.4, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.2, 0.4)
ω (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.4, 0.3, 0.4)
ω2 (0.5, 0.6, 0.4) (0.4, 0.6, 0.6) (0.5, 0.2, 0.4)

Remark 3.1. From the above example we see that the nature of coset in an NSG is dissimilar to that in a

classical group. We take the case of left NSC only. Similar conclusion holds in case of right NSC also.

(i) Any pair of NSCs fP (a)oM, fP (b)oM and fP (c)oM are neither equal nor disjoint. They have only one

common element fP (a)ofM (b) = fP (b)ofM (b) = fP (c)ofM (b) = {< 1, (0.4, 0.6, 0.6) >,< ω, (0.4, 0.6, 0.6) >,<

ω2, (0.4, 0.6, 0.6) >} .
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(ii) For the left NSC of M in P , each element fP (a)ofM (a) , fP (b)ofM (a) , fP (c)ofM (a) , · · · ∈ P ∧ P
by Definition 2.10, as fP (a)ofM (a) ⊆ fP∧P (a, a) , fP (b)ofM (a) ⊆ fP∧P (b, a) and so on. But the cosets

do not make partition of P ∧ P . Here we use the term ‘partition’ in the sense that ∪e (fP (e)oM) = P ∧
P (i.e., in a particular case it may happen in the Example 3.1 that fP (a)oM = fP∧P (a, a), fP (b)oM =

fP∧P (b, b), fP (c)oM = fP∧P (c, c),∀fM (e) ∈ M and so on) and ∀a, b(a 6= b) ∈ E, (fP (a)oM) ∩ (fP (b)oM)

is not identical with an element of P ∧P . We do not use the expression (fP (a)oM)∩ (fP (b)oM) /∈ P ∧P due

to the Definition 2.10.

That is why there is a problem to develop the Lagrange theorem for NSG. So we have introduced here

only the concept of Lagrange NSG.

Definition 3.2. Let P be an NSG over (G,E). The number of distinct elements in P is called the order of P

and is denoted by |P | . A finite NSG P over (G,E) contains finite number of elements, otherwise it is called

infinite NSG.

Example 3.2. 1. Let us consider an NSG P over (V,E) as given in Table 5 where V = {e, a, b, c} be the Klein’s

4 group and E = {α, β, γ, δ} be the set of parameters. ∗ and � are u∗v = max{u+v−1, 0}, u�v = min{u+v, 1} .

Table 5. Table for NSG P
fP (α) fP (β) fP (γ) fP (δ)

e (0.6, 0.3, 0.1) (0.8, 0.1, 0.3) (0.7, 0.2, 0.1) (0.6, 0.3, 0.3)
a (0.7, 0.2, 0.7) (0.5, 0.3, 0.4) (0.8, 0.1, 0.2) (0.6, 0.3, 0.4)
b (0.7, 0.2, 0.5) (0.8, 0.1, 0.5) (0.6, 0.3, 0.3) (0.5, 0.4, 0.6)
c (0.6, 0.3, 0.2) (0.7, 0.2, 0.3) (0.7, 0.1, 0.4) (0.4, 0.2, 0.5)

It is a finite NSG.

2. Consider another NSG M over (G,E) where E = N (the set of natural numbers), be the parametric set

and G = (Z,+) be the group of all integers. Define a mapping fM : N→ NS(Z) where, for any n ∈ N and

x ∈ Z ,

TfM (n)(x) =

{
0, x odd
1
5n , x even.

IfM (n)(x) =

{
1

n+1 , x odd

0, x even.
FfM (n)(x) =

{
1− 1

3n , x odd
0, x even.

Corresponding t-norm and s-norm are taken as u ∗ v = min{u, v}, u � v = max{u, v} . It is an infinite NSG.

Definition 3.3. Let P,M be two finite NSGs over (G,E) such that P ⊂ M . If |P |/|M | , then P is called a

Lagrange neutrosophic soft subgroup. For a finite NSG M , if all it’s neutrosophic soft subgroups are Lagrange

then M is said to be a Lagrange NSG.

An NSG M , having no Lagrange neutrosophic soft subgroup, is called Lagrange free NSG.

Example 3.3. We consider the NSG M over [(Z3,+), E] given in Table 6, where E = {e1, e2, e3, e4} .

u ∗ v = max{u+ v − 1, 0}, u � v = min{u+ v, 1} are corresponding t-norm and s-norm.

We construct two neutrosophic soft subgroups P,Q of M over that [(Z3,+), E] given in Table 7 and

Table 8, respectively.

Here |P | = 4 and |Q| = 3 , as fQ(e2) = fQ(e3) . Thus |P |/|M | but |Q| does not divide |M | i.e., the

order of each neutrosophic soft subgroup of M does not divide |M | . So in general, an NSG does not satisfy the

Lagrange theorem in classical sense. Moreover P is called a Lagrange neutrosophic soft subgroup of M .
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Table 6. Table for NSG M
fM (e1) fM (e2) fM (e3) fM (e4)

0 (0.7, 0.4, 0.3) (0.6, 0.5, 0.6) (0.3, 0.7, 0.4) (0.4, 0.5, 0.5)
1 (0.5, 0.7, 0.2) (0.7, 0.3, 0.4) (0.6, 0.5, 0.3) (0.1, 0.7, 0.6)
2 (0.4, 0.8, 0.5) (0.5, 0.6, 0.7) (0.5, 0.4, 0.2) (0.5, 0.8, 0.4)

Table 7. Tabular form of neutrosophic soft subgroup P

fP (e1) fP (e2) fP (e3) fP (e4)
0 (0.6, 0.5, 0.4) (0.5, 0.6, 0.7) (0.2, 0.8, 0.5) (0.3, 0.6, 0.6)
1 (0.4, 0.8, 0.3) (0.6, 0.4, 0.5) (0.5, 0.6, 0.4) (0.1, 0.8, 0.7)
2 (0.3, 0.9, 0.6) (0.4, 0.7, 0.8) (0.4, 0.5, 0.3) (0.4, 0.9, 0.5)

Table 8. Tabular form of neutrosophic soft subgroup Q

fQ(e1) fQ(e2) fQ(e3) fQ(e4)
0 (0.5, 0.6, 0.5) (0.3, 0.7, 0.8) (0.3, 0.7, 0.8) (0.4, 0.7, 0.6)
1 (0.3, 0.7, 0.4) (0.5, 0.5, 0.6) (0.5, 0.5, 0.6) (0.1, 0.7, 0.8)
2 (0.1, 0.8, 0.7) (0.2, 0.7, 0.7) (0.2, 0.7, 0.7) (0.3, 0.8, 0.4)

Theorem 3.1. Let M,P be two NSGs over (G,E) such that M ⊂ P . Then any two left (right) NSCs of M

in P have same cardinality.

Proof. Proof. Let fP (a)oM and fP (b)oM be two left NSCs of M in P over (G,E). We define a neutrosophic

soft mapping (ψ, ξ) : fP (a)oM −→ fP (b)oM by (ψ, ξ)(fP (a)ofM (e)) = fP (b)ofM (e′),∀fM (e), fM (e′) ∈M i.e.,

(ψ, ξ)(fL(a, e)) = fL(b, e′) where fP (a)ofM (e) = fL(a, e). We are to show that (ψ, ξ) is bijective. Let,

(ψ, ξ)(fL(a, e1)) = (ψ, ξ)(fL(a, e2))

⇒ Tfψ(L)ξ(a,e1)(y) = Tfψ(L)ξ(a,e2)(y), Ifψ(L)ξ(a,e1)(y) = Ifψ(L)ξ(a,e2)(y),

Ffψ(L)ξ(a,e1)(y) = Ffψ(L)ξ(a,e2)(y), ∀y ∈ G.

⇒ max
ψ(x)

max
ξ(a,e1)

[TfL(a,e1)(x)] = max
ψ(x)

max
ξ(a,e2)

[TfL(a,e2)(x)],

min
ψ(x)

min
ξ(a,e1)

[IfL(a,e1)(x)] = min
ψ(x)

min
ξ(a,e2)

[IfL(a,e2)(x)],

min
ψ(x)

min
ξ(a,e1)

[FfL(a,e1)(x)] = min
ψ(x)

min
ξ(a,e2)

[FfL(a,e2)(x)], if x ∈ ψ−1(y)

and if x /∈ ψ−1(y), the equality is also obvious from definition.

⇒ TfL(a,e1)(x) = TfL(a,e2)(x), IfL(a,e1)(x) = IfL(a,e2)(x), FfL(a,e1)(x) = FfL(a,e2)(x),

∀x ∈ G ( as x is arbitrary).

⇒ fL(a, e1) = fL(a, e2)

Thus (ψ, ξ) is injective and from formation (ψ, ξ) is onto also. This ends the proof.

The theorem can be verified from the Example 3.1.

Definition 3.4. An NSG P over the group G is called abelian NSG if fP (a)ofP (b) = fP (b)ofP (a), ∀a, b ∈ E ,

otherwise it is non-abelian.

7
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Example 3.4. 1. The NSG P defined in Example 3.1 is abelian.

2. We define another NSG Q over (S3, E) where S3 is the group (Table 9) of all permutations on the set

S = {1, 2, 3} i.e., S3 = {ρ0(i), ρ1(123), ρ2(132) , ρ3(23), ρ4(13), ρ5(12)} and E = {a, b, c} , as given in Table 10.

Table 9. Table for multiplication operation on S3

. ρ0 ρ1 ρ2 ρ3 ρ4 ρ5
ρ0 ρ0 ρ1 ρ2 ρ3 ρ4 ρ5
ρ1 ρ1 ρ2 ρ0 ρ5 ρ3 ρ4
ρ2 ρ2 ρ0 ρ1 ρ4 ρ5 ρ3
ρ3 ρ3 ρ4 ρ5 ρ0 ρ1 ρ2
ρ4 ρ4 ρ5 ρ3 ρ2 ρ0 ρ1
ρ5 ρ5 ρ3 ρ4 ρ1 ρ2 ρ0

Table 10. Tabular form of NSG Q

fQ(a) fQ(b) fQ(c)
ρ0 (0.4, 0.4, 0.9) (0.6, 0.6, 0.6) (0.5, 0.6, 0.6)
ρ1 (0.6, 0.4, 0.7) (0.5, 0.8, 0.5) (0.4, 0.5, 0.7)
ρ2 (0.4, 0.5, 0.8) (0.5, 0.6, 0.7) (0.3, 0.6, 0.4)
ρ3 (0.5, 0.7, 0.6) (0.4, 0.5, 0.4) (0.7, 0.4, 0.5)
ρ4 (0.7, 0.6, 0.7) (0.2, 0.4, 0.8) (0.5, 0.3, 0.4)
ρ5 (0.3, 0.3, 0.5) (0.7, 0.5, 0.3) (0.6, 0.5, 0.6)

u ∗ v = max{u+ v − 1, 0}, u � v = min{u+ v, 1} are t-norm and s-norm. Then Q is non-abelian NSG

over (S3, E) .

To verify, we estimate the truth membership functions of ρ1 in fQ(a)ofQ(b) and fQ(b)ofQ(a) with respect

to the said t-norm. Here ρ1 = ρ0 · ρ1 = ρ1 · ρ0 = ρ2 · ρ2 = ρ3 · ρ4 = ρ4 · ρ5 = ρ5 · ρ3 . Now,

TfL(a,b)(ρ1) = max{TfQ(a)(ρ0) ∗ TfQ(b)(ρ1), TfQ(a)(ρ1) ∗ TfQ(b)(ρ0), TfQ(a)(ρ2) ∗ TfQ(b)(ρ2),

TfQ(a)(ρ3) ∗ TfQ(b)(ρ4), TfQ(a)(ρ4) ∗ TfQ(b)(ρ5), TfQ(a)(ρ5) ∗ TfQ(b)(ρ3)}

= max{0.4 ∗ 0.5, 0.6 ∗ 0.6, 0.4 ∗ 0.5, 0.5 ∗ 0.2, 0.7 ∗ 0.7, 0.3 ∗ 0.4}

= max{0, 0.2, 0, 0, 0.4, 0} = 0.4

TfL(b,a)(ρ1) = max{TfQ(b)(ρ0) ∗ TfQ(a)(ρ1), TfQ(b)(ρ1) ∗ TfQ(a)(ρ0), TfQ(b)(ρ2) ∗ TfQ(a)(ρ2),

TfQ(b)(ρ3) ∗ TfQ(a)(ρ4), TfQ(b)(ρ4) ∗ TfQ(a)(ρ5), TfQ(b)(ρ5) ∗ TfQ(a)(ρ3)}

= max{0.6 ∗ 0.6, 0.5 ∗ 0.4, 0.5 ∗ 0.4, 0.4 ∗ 0.7, 0.2 ∗ 0.3, 0.7 ∗ 0.5}

= max{0.2, 0, 0, 0.1, 0, 0.2} = 0.2

Remark 3.2. An NSG P will be abelian or non-abelian according as the classical group G and the parametric

set E over which P is defined are together abelian or non-abelian, respectively unless all neutrosophic soft

elements in P are identical.

Definition 3.5. A neutrosophic soft subgroup M of an NSG P over (G,E) is called neutrosophic normal soft

subgroup if fP (e)oM = MofP (e),∀fP (e) ∈ P .

8
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Example 3.5. 1. From Table 3 and Table 4, it is clear that M is a neutrosophic normal soft subgroup of P

over (G,E) .

2. The null NSG φG over (G,E) is a neutrosophic normal soft subgroup of every NSG P defined over same

(G,E) .

3. The NSG Q in Table 11 has no neutrosophic normal soft subgroup except φS3
.

Remark 3.3. (i) For a neutrosophic normal soft subgroup M of an NSG P , each left coset and right coset

of M in P are equal. We then call only neutrosophic soft coset of M in P instead of left and right coset

separately.

(ii) Every neutrosophic soft subgroup of an abelian NSG is always normal as well as abelian. In particular, each

abelian NSG is itself normal.

(iii) Every non-null neutrosophic soft subgroup of a non-abelian NSG is non-normal.

(iv) Every neutrosophic normal soft subgroup of an NSG is abelian. In particular, each neutrosophic normal

soft group (NNSG ) is itself abelian.

Theorem 3.2. Let P be an NNSG over (X,E) and (ψ, ξ) : (X,E) −→ (Y,E) be a neutrosophic soft

epimorphism where X,Y are two classical groups and E is a parametric set. Then (ψ, ξ)(P ) is an NNSG

over (Y,E) .

Proof. Here P is abelian NSG over (X,E) and so both X,E are abelian together. For x, x1, x2 ∈ X with

x = x1 ◦ x2 and a, b ∈ E , we have,

fP (a)oP = PofP (a), ∀fP (a) ∈ P

⇒ fP (a)ofP (b) = fP (b)ofP (a), ∀fP (a), fP (b) ∈ P

⇒ max
x=x1◦x2

[TfP (a)(x1) ∗ TfP (b)(x2)] = max
x=x1◦x2

[TfP (b)(x1) ∗ TfP (a)(x2)],

min
x=x1◦x2

[IfP (a)(x1) � IfP (b)(x2)] = min
x=x1◦x2

[IfP (b)(x1) � IfP (a)(x2)],

min
x=x1◦x2

[FfP (a)(x1) � FfP (b)(x2)] = min
x=x1◦x2

[FfP (b)(x1) � FfP (a)(x2)].

As (ψ, ξ) is a neutrosophic soft epimorphism, for y, y1, y2 ∈ Y and a′, b′ ∈ E such that ψ(x) = y, ψ(x1) =

y1, ψ(x2) = y2 and ξ(a) = a′, ξ(b) = b′ .

Also ψ(x) = ψ(x1 ◦ x2) = ψ(x1) ◦ ψ(x2) i.e., y = y1 ◦ y2 . Then,

max
y=y1◦y2

[Tfψ(P )(a′)(y1) ∗ Tfψ(P )(b′)(y2)]

= max
y=y1◦y2

{ max
y1=ψ(x1)

max
a′=ξ(a)

[TfP (a)(x1)] ∗ max
y2=ψ(x2)

max
b′=ξ(b)

[TfP (b)(x2)]}

= max
y=y1◦y2

{ max
ψ(x1)◦ψ(x2)

max
ξ(a)◦ξ(b)

[TfP (a)(x1) ∗ TfP (b)(x2)]}

= max
ψ(x1)◦ψ(x2)

max
ξ(a)◦ξ(b)

{ max
x=x1◦x2

[TfP (a)(x1) ∗ TfP (b)(x2)]}

= max
ψ(x1◦x2)

max
ξ(a◦b)

{ max
x=x1◦x2

[TfP (b)(x1) ∗ TfP (a)(x2)]}

9
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by the condition of truth membership function provided

= max
ψ(x1◦x2)

max
ξ(b◦a)

{ max
x=x1◦x2

[TfP (b)(x1) ∗ TfP (a)(x2)]}

( as E is abelian in classical sense)

= max
y=y1◦y2

{ max
ψ(x1◦x2)

max
ξ(b◦a)

[TfP (b)(x1) ∗ TfP (a)(x2)]}

= max
y=y1◦y2

{ max
ψ(x1)◦ψ(x2)

max
ξ(b)◦ξ(a)

[TfP (b)(x1) ∗ TfP (a)(x2)]}

= max
y=y1◦y2

{ max
y1=ψ(x1)

max
b′=ξ(b)

[TfP (b)(x1)] ∗ max
y2=ψ(x2)

max
a′=ξ(a)

[TfP (a)(x2)]}

= max
y=y1◦y2

[Tfψ(P )(b′)(y1) ∗ Tfψ(P )(a′)(y2)]. (1)

Next,

min
y=y1◦y2

[Ifψ(P )(a′)(y1) � Ifψ(P )(b′)(y2)]

= min
y=y1◦y2

{ min
y1=ψ(x1)

min
a′=ξ(a)

[IfP (a)(x1)] � min
y2=ψ(x2)

min
b′=ξ(b)

[IfP (b)(x2)]}

= min
y=y1◦y2

{ min
ψ(x1)◦ψ(x2)

min
ξ(a)◦ξ(b)

[IfP (a)(x1) � IfP (b)(x2)]}

= min
ψ(x1)◦ψ(x2)

min
ξ(a)◦ξ(b)

{ min
x=x1◦x2

[IfP (a)(x1) � IfP (b)(x2)]}

= min
ψ(x1◦x2)

min
ξ(b◦a)

{ min
x=x1◦x2

[IfP (b)(x1) � IfP (a)(x2)]}

= min
ψ(x1◦x2)

min
ξ(b◦a)

{ min
x=x1◦x2

[IfP (b)(x1) � IfP (a)(x2)]}

= min
y=y1◦y2

{ min
ψ(x1◦x2)

min
ξ(b◦a)

[IfP (b)(x1) � IfP (a)(x2)]}

= min
y=y1◦y2

{ min
ψ(x1)◦ψ(x2)

min
ξ(b)◦ξ(a)

[IfP (b)(x1) � IfP (a)(x2)]}

= min
y=y1◦y2

{ min
y1=ψ(x1)

min
b′=ξ(b)

[IfP (b)(x1)] � min
y2=ψ(x2)

min
a′=ξ(a)

[IfP (a)(x2)]}

= min
y=y1◦y2

[Ifψ(P )(b′)(y1) � Ifψ(P )(a′)(y2)] (2)

Finally,

min
y=y1◦y2

[Ffψ(P )(a′)(y1) � Ffψ(P )(b′)(y2)]

= min
y=y1◦y2

{ min
y1=ψ(x1)

min
a′=ξ(a)

[FfP (a)(x1)] � min
y2=ψ(x2)

min
b′=ξ(b)

[FfP (b)(x2)]}

= min
y=y1◦y2

{ min
ψ(x1)◦ψ(x2)

min
ξ(a)◦ξ(b)

[FfP (a)(x1) � FfP (b)(x2)]}

= min
ψ(x1)◦ψ(x2)

min
ξ(a)◦ξ(b)

{ min
x=x1◦x2

[FfP (a)(x1) � FfP (b)(x2)]}

= min
ψ(x1◦x2)

min
ξ(b◦a)

{ min
x=x1◦x2

[FfP (b)(x1) � FfP (a)(x2)]}

= min
ψ(x1◦x2)

min
ξ(b◦a)

{ min
x=x1◦x2

[FfP (b)(x1) � FfP (a)(x2)]}

10
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= min
y=y1◦y2

{ min
ψ(x1◦x2)

min
ξ(b◦a)

[FfP (b)(x1) � FfP (a)(x2)]}

= min
y=y1◦y2

{ min
ψ(x1)◦ψ(x2)

min
ξ(b)◦ξ(a)

[FfP (b)(x1) � FfP (a)(x2)]}

= min
y=y1◦y2

{ min
y1=ψ(x1)

min
b′=ξ(b)

[FfP (b)(x1)] � min
y2=ψ(x2)

min
a′=ξ(a)

[FfP (a)(x2)]}

= min
y=y1◦y2

[Ffψ(P )(b′)(y1) � Ffψ(P )(a′)(y2)]. (3)

From (1), (2) and (3), we have, fψ(P )(a
′)ofψ(P )(b

′) = fψ(P )(b
′)ofψ(P )(a

′)

⇒ fψ(P )(a
′)o(ψ, ξ)(P ) = (ψ, ξ)(P )ofψ(P )(a

′), as fψ(P )(b
′) ∈ (ψ, ξ)(P ) arbitrary.

As fψ(P )(a
′) ∈ (ψ, ξ)(P ) is an arbitrary, so (ψ, ξ)(P ) is an NNSG over (Y,E).

Theorem 3.3. Let M be an NNSG over (Y,E) and (ψ, ξ) : (X,E) −→ (Y,E) be a neutrosophic soft

homomorphism where X,Y are two classical groups and E is a parametric set. Then (ψ, ξ)−1(M) is an

NNSG over (X,E) .

Proof. Here M is abelian NSG over (Y,E) and so both Y,E are abelian together. Let a, b ∈ ξ−1(E) and

x, x1, x2 ∈ X with x = x1 ◦ x2 . As (ψ, ξ) is a neutrosophic soft homomorphism, so ψ(x) = ψ(x1 ◦ x2) =

ψ(x1) ◦ ψ(x2). Then,

fM (ξ(a))oM = MofM (ξ(a)), ∀fM (ξ(a)) ∈M

⇒ fM (ξ(a))ofM (ξ(b)) = fM (ξ(b))ofM (ξ(a)), ∀fM (ξ(a)), fM (ξ(b)) ∈M

⇒ max
ψ(x)=ψ(x1)◦ψ(x2)

[TfM [ξ(a)](ψ(x1)) ∗ TfM [ξ(b)](ψ(x2))]

= max
ψ(x)=ψ(x1)◦ψ(x2)

[TfM [ξ(b)](ψ(x1)) ∗ TfM [ξ(a)](ψ(x2))],

min
ψ(x)=ψ(x1)◦ψ(x2)

[IfM [ξ(a)](ψ(x1)) � IfM [ξ(b)](ψ(x2))]

= min
ψ(x)=ψ(x1)◦ψ(x2)

[IfM [ξ(b)](ψ(x1)) � IfM [ξ(a)](ψ(x2))],

min
ψ(x)=ψ(x1)◦ψ(x2)

[FfM [ξ(a)](ψ(x1)) � FfM [ξ(b)](ψ(x2))]

= min
ψ(x)=ψ(x1)◦ψ(x2)

[FfM [ξ(b)](ψ(x1)) � FfM [ξ(a)](ψ(x2))].

As (ψ, ξ) is a neutrosophic soft homomorphism, so ψ(x) = ψ(x1 ◦ x2) = ψ(x1) ◦ ψ(x2).

Now, max
x=x1◦x2

[Tfψ−1(M)(a)
(x1) ∗ Tfψ−1(M)(b)

(x2)]

= max
ψ(x)=ψ(x1)◦ψ(x2)

[TfM [ξ(a)](ψ(x1)) ∗ TfM [ξ(b)](ψ(x2))]

= max
ψ(x)=ψ(x1◦x2)

[TfM [ξ(b)](ψ(x1)) ∗ TfM [ξ(a)](ψ(x2))]

( by the condition of truth membership function provided )

= max
x=x1◦x2

[Tfψ−1(M)(b)
(x1) ∗ Tfψ−1(M)(a)

(x2)]. (4)

11
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Next, min
x=x1◦x2

[Ifψ−1(M)(a)
(x1) � Ifψ−1(M)(b)

(x2)]

= min
ψ(x)=ψ(x1)◦ψ(x2)

[IfM [ξ(a)](ψ(x1)) � IfM [ξ(b)](ψ(x2))]

= min
ψ(x)=ψ(x1◦x2)

[IfM [ξ(b)](ψ(x1)) � IfM [ξ(a)](ψ(x2))]

( by the condition of indeterminacy membership function provided )

= min
x=x1◦x2

[Ifψ−1(M)(b)
(x1) � Ifψ−1(M)(a)

(x2)]. (5)

Finally, min
x=x1◦x2

[Ffψ−1(M)(a)
(x1) � Ffψ−1(M)(b)

(x2)]

= min
ψ(x)=ψ(x1)◦ψ(x2)

[FfM [ξ(a)](ψ(x1)) � FfM [ξ(b)](ψ(x2))]

= min
ψ(x)=ψ(x1◦x2)

[FfM [ξ(b)](ψ(x1)) � FfM [ξ(a)](ψ(x2))]

= min
x=x1◦x2

[Ffψ−1(M)(b)
(x1) � Ffψ−1(M)(a)

(x2)]. (6)

From (4), (5) and (6), we have,

fψ−1(M)(a)ofψ−1(M)(b) = fψ−1(M)(b)ofψ−1(M)(a).

⇒ fψ−1(M)(a)o(ψ, ξ)−1(M) = (ψ, ξ)−1(M)ofψ−1(M)(a). [as fψ−1(M)(b) ∈ (ψ, ξ)−1(M) arbitrary.]

As fψ−1(M)(a) ∈ (ψ, ξ)−1(M) is an arbitrary, so (ψ, ξ)−1(M) is an NNSG over (X,E).

Theorem 3.4. Let M be a neutrosophic normal soft subgroup of an NSG P over (G,E) and Ω be a collection

of all distinct NSCs of M in P . Then Ω forms an NSG over (G,E × E) .

Proof. As M is an NNSG defined over (G,E), then M is abelian and so G is abelian by Remark 3.2. Moreover

there is no distinction between left and right NSC of M in P over (G,E × E). Let (a, b) ∈ E × E and

x, y, z, y1, y2, z1, z2 ∈ G be arbitrary such that x = y ◦ z, y = y1 ◦ y2, z = z1 ◦ z2 . Suppose PoM = L . Now,

TfL(a,b)(y) ∗ TfL(a,b)(z)

= max
y=y1◦y2

[TfP (a)(y1) ∗ TfM (b)(y2)] ∗ max
z=z1◦z2

[TfP (a)(z1) ∗ TfM (b)(z2)]

= max
x=(y1◦y2)◦(z1◦z2)

[(TfP (a)(y1) ∗ TfM (b)(y2)) ∗ (TfP (a)(z1) ∗ TfM (b)(z2))]

= max
x=(y1◦y2)◦(z1◦z2)

[(TfP (a)(y1) ∗ TfP (a)(z1)) ∗ (TfM (b)(y2) ∗ TfM (b)(z2))]

( as ∗ is commutative )

≤ max
x=(y1◦y2)◦(z1◦z2)

[TfP (a)(y1 ◦ z1) ∗ TfM (b)(y2 ◦ z2)]

( as M and P are two neutrosophic soft groups )

= TfL(a,b)[(y1 ◦ z1) ◦ (y2 ◦ z2)]

= TfL(a,b)[(y1 ◦ y2) ◦ (z1 ◦ z2)] ( as G is abelian )

= TfL(a,b)(y ◦ z).

Thus, TfL(a,b)(y ◦ z) ≥ TfL(a,b)(y) ∗ TfL(a,b)(z). Next,
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IfL(a,b)(y) ∗ IfL(a,b)(z)

= min
y=y1◦y2

[IfP (a)(y1) � IfM (b)(y2)] � min
z=z1◦z2

[IfP (a)(z1) � IfM (b)(z2)]

= min
x=(y1◦y2)◦(z1◦z2)

[(IfP (a)(y1) � IfM (b)(y2)) � (IfP (a)(z1) � IfM (b)(z2))]

= min
x=(y1◦y2)◦(z1◦z2)

[(IfP (a)(y1) � IfP (a)(z1)) � (IfM (b)(y2) � IfM (b)(z2))]

≥ min
x=(y1◦y2)◦(z1◦z2)

[IfP (a)(y1 ◦ z1) � IfM (b)(y2 ◦ z2)]

= IfL(a,b)[(y1 ◦ z1) ◦ (y2 ◦ z2)] = IfL(a,b)[(y1 ◦ y2) ◦ (z1 ◦ z2)] = IfL(a,b)(y ◦ z).

So, IfL(a,b)(y ◦ z) ≤ IfL(a,b)(y) � IfL(a,b)(z). Finally,

FfL(a,b)(y) � FfL(a,b)(z)

= min
y=y1◦y2

[FfP (a)(y1) � FfM (b)(y2)] � min
z=z1◦z2

[FfP (a)(z1) � FfM (b)(z2)]

= min
x=(y1◦y2)◦(z1◦z2)

[(FfP (a)(y1) � FfM (b)(y2)) � (FfP (a)(z1) � FfM (b)(z2))]

= min
x=(y1◦y2)◦(z1◦z2)

[(FfP (a)(y1) � FfP (a)(z1)) � (FfM (b)(y2) � FfM (b)(z2))]

≥ min
x=(y1◦y2)◦(z1◦z2)

[FfP (a)(y1 ◦ z1) � FfM (b)(y2 ◦ z2)]

= FfL(a,b)[(y1 ◦ z1) ◦ (y2 ◦ z2)] = FfL(a,b)[(y1 ◦ y2) ◦ (z1 ◦ z2)] = FfL(a,b)(y ◦ z)

Thus FfL(a,b)(y ◦ z) ≤ FfL(a,b)(y) � FfL(a,b)(z) and this ends the proof.

This group Ω is called neutrosophic soft quotient group of P by M over (G,E ×E) and is denoted by

P/M .

Proposition 3.1. Let M be a neutrosophic normal soft subgroup of an NSG P over (G,E) . Then there exists

a neutrosophic soft homomorphism (ψ, ξ) : P −→ P/M defined as (ψ, ξ)(fP (a)) = fP (a)oM, ∀fP (a) ∈ P if

u ∗ v = min{u, v} and u � v = max{u, v} .

Proof. Let (ψ, ξ) : P −→ P/M be defined as (ψ, ξ)(fP (a)) = fP (a)ofM (e),∀fM (e) ∈M . We shall show (ψ, ξ)

a neutrosophic soft homomorphism in the sense that

(ψ, ξ)[fP (a)ofP (b)] = (ψ, ξ)[fP (a)]o(ψ, ξ)[fP (b)], ∀a, b ∈ E.

⇒ (fP (a)ofP (b))ofM (e) = (fP (a)ofM (e))o(fP (b)ofM (e)).

Since M is an NNSG over (G,E), so G is commutative. Let x, y, z, s1, s2, s, t ∈ G such that t = x ◦ y, s1 =

13
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x ◦ z, s2 = y ◦ z, s = t ◦ z . Then,

fP (a)ofP (b) = {< t, max
t=x◦y

[TfP (a)(x) ∗ TfP (b)(y)], min
t=x◦y

[IfP (a)(x) � IfP (b)(y)],

min
t=x◦y

[FfP (a)(x) � FfP (b)(y)] >: t ∈ G}

(fP (a)ofP (b))ofM (e) = {< s, max
s=t◦z

[ max
t=x◦y

[TfP (a)(x) ∗ TfP (b)(y)] ∗ TfM (e)(z)],

min
s=t◦z

[ min
t=x◦y

[IfP (a)(x) � IfP (b)(y)] � IfM (e)(z)],

min
s=t◦z

[ min
t=x◦y

[FfP (a)(x) � FfP (b)(y)] � FfM (e)(z)] >: s ∈ G}

fP (a)ofM (e) = {< s1,max
x◦z

[TfP (a)(x) ∗ TfM (e)(z)],min
x◦z

[IfP (a)(x) � IfM (e)(z)],

min
x◦z

[FfN (a)(x) � FfM (e)(z)] >: s1 ∈ G}

fP (b)ofM (e) = {< s2,max
y◦z

[TfP (b)(y) ∗ TfM (e)(z)],min
y◦z

[IfP (b)(y) � IfM (e)(z)],

min
y◦z

[FfP (b)(y) � FfM (e)(z)] >: s2 ∈ G}

Now, max
s1◦s2
{ max
s1=x◦z

[TfP (a)(x) ∗ TfM (e)(z)] ∗ max
s2=y◦z

[TfP (b)(y) ∗ TfM (e)(z)]}

= max
s1◦s2
{ max
s1◦s2=(x◦z)◦(y◦z)

([TfP (a)(x) ∗ TfM (e)(z)] ∗ [TfP (b)(y) ∗ TfM (e)(z)])}

= max
s1◦s2
{ max
s1◦s2=(x◦y)◦(z◦z)

([TfP (a)(x) ∗ TfP (b)(y)] ∗ [TfM (e)(z) ∗ TfM (e)(z)])}

( as ∗ and G both are commutative )

= max
s=t◦z

{ max
t=x◦y

[TfP (a)(x) ∗ TfP (b)(y)] ∗ TfM (e)(z)} (7)

Next, min
s1◦s2
{ min
s1=x◦z

[IfP (a)(x) � IfM (e)(z)] � max
s2=y◦z

[IfP (b)(y) � IfM (e)(z)]}

= min
s1◦s2
{ min
s1◦s2=(x◦z)◦(y◦z)

([IfP (a)(x) � IfM (e)(z)] � [IfP (b)(y) � IfM (e)(z)])}

= min
s1◦s2
{ min
s1◦s2=(x◦y)◦(z◦z)

([IfP (a)(x) � IfP (b)(y)] � [IfM (e)(z) � IfM (e)(z)])}

= min
s=t◦z

{ min
t=x◦y

[IfP (a)(x) � IfP (b)(y)] � IfM (e)(z)} (8)

Finally, min
s1◦s2
{ min
s1=x◦z

[FfP (a)(x) � FfM (e)(z)] � max
s2=y◦z

[FfP (b)(y) � FfM (e)(z)]}

= min
s1◦s2
{ min
s1◦s2=(x◦z)◦(y◦z)

([FfP (a)(x) � FfM (e)(z)] � [FfP (b)(y) � FfM (e)(z)])}

= min
s1◦s2
{ min
s1◦s2=(x◦y)◦(z◦z)

([FfP (a)(x) � FfP (b)(y)] � [FfM (e)(z) � FfM (e)(z)])}

= min
s=t◦z

{ min
t=x◦y

[FfP (a)(x) � FfP (b)(y)] � FfM (e)(z)} (9)

From (7), (8) and (9), we see that

(fP (a)ofM (e))o(fP (b)ofM (e)) = (fP (a)ofP (b))ofM (e) and this ends the proof.

14
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Definition 3.6. Let M and P be two NSGs over (G,E). Their direct product is denoted by M ⊗ P and is

defined as :

M ⊗ P = {〈(a, b), (fM (a), fP (b))〉 : (a, b) ∈ E × E} where

(fM (a), fN (b)) = {< (x, y), TfM (a)(x) ∗ TfP (b)(y), IfM (a)(x) � IfP (b)(y),

FfM (a)(x) � FfP (b)(y) >: (x, y) ∈ G×G}

The definition can be extended for any finite number of NSGs.

Example 3.6. Consider NSGs M,P defined in Table 1 and Table 2, respectively. Then their direct product

M ⊗ P is given in Table 11. The ∗ and � are taken as u ∗ v = min{u, v}, u � v = max{u, v} .

Theorem 3.5. Let M,P be two NSGs over (G,E) . Then their direct product M ⊗ P is also an NSG over

(G×G,E × E) .

Proof. Let (a, b) ∈ E×E and (x, y) ∈ G×G be arbitrary such that (x, y) = (x1, y1)◦(x2, y2) for x1, x2, y1, y2 ∈
G . Now,

TfM⊗P (a,b)[(x1, y1) ◦ (x2, y2)] = TfM⊗P (a,b)(x1 ◦ x2, y1 ◦ y2)

= TfM (a)(x1 ◦ x2) ∗ TfP (b)(y1 ◦ y2)

≥ [TfM (a)(x1) ∗ TfM (a)(x2)] ∗ [TfP (b)(y1) ∗ TfP (b)(y2)]

( as M,P are two NSGs )

= [TfM (a)(x1) ∗ TfP (b)(y1)] ∗ [TfM (a)(x2) ∗ TfP (b)(y2)]

( as ∗ is commutative )

= TfM⊗P (a,b)(x1, y1) ∗ TfM⊗N (a,b)(x2, y2) (10)

IfM⊗P (a,b)[(x1, y1) ◦ (x2, y2)] = IfM⊗P (a,b)(x1 ◦ x2, y1 ◦ y2)

= IfM (a)(x1 ◦ x2) � IfP (b)(y1 ◦ y2)

≤ [IfM (a)(x1) � IfM (a)(x2)] � [IfP (b)(y1) � IfP (b)(y2)]

= [IfM (a)(x1) � IfP (b)(y1)] � [IfM (a)(x2) � IfP (b)(y2)]

= IfM⊗N (a,b)(x1, y1) � IfM⊗P (a,b)(x2, y2) (11)

FfM⊗P (a,b)[(x1, y1) ◦ (x2, y2)] = FfM⊗P (a,b)(x1 ◦ x2, y1 ◦ y2)

= FfM (a)(x1 ◦ x2) � FfP (b)(y1 ◦ y2)

≤ [FfM (a)(x1) � FfM (a)(x2)] � [FfP (b)(y1) � FfP (b)(y2)]

= [FfM (a)(x1) � FfP (b)(y1)] � [FfM (a)(x2) � FfP (b)(y2)]

= FfM⊗P (a,b)(x1, y1) � FfM⊗P (a,b)(x2, y2) (12)

Hence the theorem follows from (10), (11) and (12).

It can be easily verified from Table 11 taking u ∗ v = uv and u � v = u+ v − uv .
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Table 11. Table for direct product M ⊗ P

(fM (a), fP (a)) (fM (a), fP (b)) (fM (a), fP (c))
(1, 1) (0.5, 0.6, 0.4) (0.5, 0.6, 0.4) (0.4, 0.6, 0.4)
(1, ω) (0.5, 0.6, 0.4) (0.4, 0.6, 0.4) (0.5, 0.6, 0.4)
(1, ω2) (0.5, 0.7, 0.4) (0.5, 0.6, 0.4) (0.5, 0.6, 0.4)

(ω, 1) (0.4, 0.7, 0.4) (0.4, 0.7, 0.4) (0.4, 0.7, 0.4)
(ω, ω) (0.4, 0.7, 0.4) (0.4, 0.7, 0.4) (0.4, 0.7, 0.4)
(ω, ω2) (0.4, 0.7, 0.4) (0.4, 0.7, 0.4) (0.4, 0.7, 0.4)

(ω2, 1) (0.3, 0.8, 0.5) (0.3, 0.8, 0.5) (0.3, 0.8, 0.5)
(ω2, ω) (0.3, 0.8, 0.5) (0.3, 0.8, 0.5) (0.3, 0.8, 0.5)
(ω2, ω2) (0.3, 0.8, 0.5) (0.3, 0.8, 0.5) (0.3, 0.8, 0.5)

(fM (b), fP (a)) (fM (b), fP (b)) (fM (b), fP (c))
(1, 1) (0.3, 0.6, 0.7) (0.3, 0.6, 0.7) (0.3, 0.6, 0.7)
(1, ω) (0.3, 0.6, 0.7) (0.3, 0.6, 0.7) (0.3, 0.6, 0.7)
(1, ω2) (0.3, 0.7, 0.7) (0.3, 0.6, 0.7) (0.3, 0.6, 0.7)

(ω, 1) (0.3, 0.8, 0.6) (0.3, 0.8, 0.6) (0.3, 0.8, 0.6)
(ω, ω) (0.3, 0.8, 0.6) (0.3, 0.8, 0.6) (0.3, 0.8, 0.6)
(ω, ω2) (0.3, 0.8, 0.6) (0.3, 0.8, 0.6) (0.3, 0.8, 0.6)

(ω2, 1) (0.4, 0.6, 0.7) (0.4, 0.6, 0.7) (0.4, 0.6, 0.7)
(ω2, ω) (0.4, 0.6, 0.7) (0.4, 0.6, 0.7) (0.4, 0.6, 0.7)
(ω2, ω2) (0.4, 0.7, 0.7) (0.4, 0.6, 0.7) (0.4, 0.6, 0.7)

(fM (c), fP (a)) (fM (c), fP (b)) (fM (c), fP (c))
(1, 1) (0.2, 0.6, 0.4) (0.2, 0.4, 0.4) (0.2, 0.3, 0.4)
(1, ω) (0.2, 0.5, 0.4) (0.2, 0.5, 0.4) (0.2, 0.3, 0.4)
(1, ω2) (0.2, 0.7, 0.4) (0.2, 0.6, 0.4) (0.2, 0.3, 0.4)

(ω, 1) (0.5, 0.6, 0.6) (0.5, 0.4, 0.6) (0.4, 0.3, 0.6)
(ω, ω) (0.5, 0.5, 0.6) (0.4, 0.5, 0.6) (0.5, 0.2, 0.6)
(ω, ω2) (0.5, 0.7, 0.6) (0.5, 0.6, 0.6) (0.5, 0.2, 0.6)

(ω2, 1) (0.3, 0.6, 0.4) (0.3, 0.4, 0.4) (0.3, 0.3, 0.4)
(ω2, ω) (0.3, 0.5, 0.4) (0.3, 0.5, 0.4) (0.3, 0.3, 0.4)
(ω2, ω2) (0.3, 0.7, 0.4) (0.3, 0.6, 0.4) (0.3, 0.3, 0.4)

Definition 3.7. An NSG over (G,E) is said to be a simple NSG if it has no neutrosophic normal soft subgroup

other than φG .

Example 3.7. 1. In the Example 3.1, the NSG P is not simple.

2. The NSG Q defined in Table 10 is a simple NSG as it has only a neutrosophic normal soft subgroup φS3
.

Theorem 3.6. Every simple NSG is non-abelian unless all the neutrosophic soft elements of the group are

identical.

Proof. Let P be a simple NSG defined over (G,E) whose atleast two neutrosophic soft elements are non-

identical. If all the neutrosophic soft elements of P are identical, then P is abelian whatever G is (abelian

/ non-abelian). For contrary, suppose P is abelian. Then G is abelian by Remark 3.2. Let M( 6= φG) be

a neutrosophic soft subgroup of P over (G,E). Then M is an abelian NSG defined over (G,E) and so is a

normal neutrosophic soft subgroup of P by Remark 3.3. Thus P being a simple NSG has a normal neutrosophic

soft subgroup M(6= φG). This is a contradiction. Hence P is non-abelian.
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Theorem 3.7. Every non-abelian NSG is simple.

Proof. Let M(6= φG) be a neutrosophic soft subgroup of a non-abelian NSG P defined over (G,E). Since P is

a non-abelian NSG, then G is non-abelian classical group and so M is non-abelian NSG over (G,E). It implies

M is non-normal, otherwise a non-abelian NSG P contains a normal neutrosophic soft subgroup M( 6= φG)

which contradicts the Remark 3.3. Hence P is simple as M is arbitrary.

4. Conclusion

In the present paper, the concept of NSC, NNSG , neutrosophic soft quotient group, direct product of NSGs

and simple NSG have been proposed in a new approach. These are illustrated with suitable examples also.

Several related properties and structural characteristics are investigated. Some theorems have been established

and verified by suitable examples. We extend these concepts in Nss theory context and expect further work in

this setting.

References

[1] Aktas H, Cagman N. Soft sets and soft groups. Information sciences, 2007; 177: 2726-2735.

[2] Aygunoglu A, Aygun H. Introduction to fuzzy soft groups. Computer and Mathematics with Applications, 2009;

58: 1279-1286.

[3] Atanassov K. Intuitionistic fuzzy sets. Fuzzy sets and systems, 1986; 20(1): 87-96.

[4] Bera T, Mahapatra NK. (α, β, γ)-cut of neutrosophic soft set and it’s application to neutrosophic soft groups. Asian

Journal of Math. and Compt. Research, 2016; 12(3): 160-178.

[5] Bera T, Mahapatra NK. Introduction to neutrosophic soft groups. Neutrosophic Sets and Systems, 2016; 13: 118-

127, doi.org/10.5281/zenodo.570845.

[6] Bera T, Mahapatra NK. On neutrosophic normal soft groups. Int. J. Appl. Comput. Math., 2016; 2(4): DOI

10.1007/s40819-016-0284-2.

[7] Bera T, Mahapatra NK. On neutrosophic soft rings. OPSEARCH, 2016; 1-25, DOI 10.1007/ s12597-016-0273-6.

[8] Bera T, Mahapatra NK. Introduction to neutrosophic soft topological spaces. OPSEARCH, 2017; DOI

10.1007/s12597-017-0308-7.

[9] Broumi S, Smarandache F, Maji PK. Intuitionistic neutrosophic soft set over rings. Mathematics and Statistics,

2014; 2(3): 120-126, DOI : 10.13189/ms.2014.020303.

[10] Cetkin V, Aygun H. An approach to neutrosophic subgroup and its fundamental properties. J. of Intelligent and

Fuzzy Systems, 2015; 29: 1941-1947.

[11] Deli I, Broumi S. Neutrosophic Soft Matrices and NSM-decision Making. Journal of Intelligent and Fuzzy Systems,

2015; 28(5): 2233-2241.

[12] Maji PK. Neutrosophic soft set. Annals of Fuzzy Mathematics and Informatics, 2013; 5(1): 157-168.

[13] Molodtsov D. Soft set theory - First results. Computer and Mathematics with Applications, 1999; 37(4-5): 19-31.

[14] Rosenfeld A. Fuzzy groups. Journal of mathematical analysis and applications, 1971; 35: 512-517.

[15] Sharma PK. Intuitionistic fuzzy groups. IFRSA International journal of data warehousing and mining, 2011; 1(1):

86-94.

[16] Smarandache F. Neutrosophic set, A generalisation of the intuitionistic fuzzy sets. Inter. J. Pure Appl. Math., 2005;

24: 287-297.

[17] Varol BP, Aygunoglu A, Aygun H. On fuzzy soft rings. Journal of Hyperstructures, 2012; 1(2): 1-15.

17



T. Bera and N. K. Mahapatra

[18] Yaqoob N, Akram M, Aslam M. Intuitionistic fuzzy soft groups induced by (t,s) norm. Indian Journal of Science

and Technology, 2013; 6(4): 4282-4289.

[19] Zadeh LA. Fuzzy sets. Information and control, 1965; 8: 338-353.

18


	Introduction
	Preliminaries
	Main Result
	Conclusion

