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Abstract: Some problems become very popular and demand rapt attention while others just collect dust on the shelf.

Big Conferences like this are a nice breeding ground for advertising or publicizing both old and new problems. Consider

for example the famous unit-distance problem. This problem asks for the smallest number of colors needed to color the

points of the plane R2 so that points unit distance apart have distinct colors. This problem was attributed to atleast

five different mathematicians in a variety of combinations. Edward Nelson, Hugo Hadwiger, Paul Erdos, Martin Gardner

and Leo Moser. It is now known as Hadwiger-Nelson problem (HNP). The problem was actually formulated by Edward

Nelson in 1950 when he was a graduate student at the University of Chicago. Nelson called it the alternative four-color

problem as it dealt with the plane and four colors. He proved that atleast four colors are needed. John Isbell upon

learning about the problem from Nelson, proved in 1951 that the unit distance graph is 7-colorable. This problem might

be a typical candidate for a famous problem. It is simple enough for high school student to understand, it is easy to

describe and looks deceptively easy to solve. After all, all one needs is to construct a finite set of points in the plane that

requires more than 4-colors or prove that any set of points is 4-colorable. As a matter of fact, while hundreds of papers

dedicated to variations of this problem have been published, no progress has been made on the actual chromatic number

of the unit distance graph since its inception. In this paper this problem is discussed further. Its variations, enormity,

challenges, bottleneck and road ahead are quite mind-boggling. However, upon reading this one gets clarity regarding

the role of several pure mathematics concepts emanating from set theory, algebra, analysis, topology and number theory.

The author of this paper was fascinated very much and is completely engrossed with this problem since 2010. The

following are some of his results in this topic.

Given a subset D in Z , an integer distance graph is a graph G(Z,D) with Z as vertex set and with an edge

joining two vertices u and v iff |u − v| ∈ D . The author considered the problem of determining χ(G(Z,D)) when D

is either a) a set of (n + 1) positive integers for which the nth power of the last is the sum of the nth powers of the

previous terms or b) a set of Pythagorean quadruples or c) a set of Pythagorean n -tuples or d) a set of square distances

or e) a set of abundant numbers or deficient numbers or Carmichael numbers or f) a set of polytope numbers or g) a

set of happy numbers or lucky numbers or h) a set of Lucas numbers or i) a set of Ulam numbers or j) a set of weird

numbers. In addition, he also found some useful upper and lower bounds for general cases too technical to mention here

[14].

Key words: Graphs, chromatic number, plane-coloring problem.

1. Introduction

A typical problem in Euclidean Ramsey theory is to determine the largest number p such that each coloring of

the n -dim euclidean space with p colors contains a monochromatic congruent copy of a fixed finite configuration
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of points. The simplest configuration about which this question can be asked consists of two points unit distance

apart.

The chromatic number of a space S is the minimum number of colors needed to color all the points of S

so that no two points of the same color are at unit distance. A unit distance graph in space S is a graph that

can be embedded in S so that the distance between each two adjacent vertices is 1.

The chromatic number χ(S) of the space S is equal to chromatic number of the graph whose vertices are

all the points of the space and two vertices are joined by an edge iff the distance of their corresponding points

is 1. This graph is an infinite unit ditance graph.

For any space S , r ∈ R+ , let χ(S, r) denote the chromatic number of the graph whose vertices are all

the points in S and edges connect pair of vertices distance r apart. The distance r is then called the forbidden

distance χ(S, 1) = χ(S).

The structure of the n -dim real space does not change after scaling. Therefore, instead of forbidding two

monochromatic points to be distance 1 apart, we can equivalently use any r ∈ R+ as the forbidden distance.

∀ r ∈ R+ : χ(Rn, r) = χ(Rn)

The situation in the line is simple: the chromatic number is 2.

Theorem 1.1. χ(G(R,D = {1})) = 2 .

Proof. Partition the vertex set of G , into two non empty disjoint sets such that their union is R . That is,

V (R) = V1 ∪ V2 , where V1 =

∞⋃
n=−∞

[2n, 2n + 1) and V2 =

∞⋃
n=−∞

[2n + 1, 2n + 2). Now color all the vertices of

V1 with color 1 and the vertices of V2 with color 2. As Vi , i = 1, 2 are independent and G(R, {1}) is bipartite

the result follows.

However the problem of finding the chromatic number of the plane is open. It is called Hadwiger-Nelson

Problem (HNP) and was originated around 1950 by Edward Nelson [7].

Lemma 1.1 (Rado Lemma). [11] Let M and M1 be arbitrary sets. Assume that to any v ∈ M1 there

corresponds a finite subset Av of M . Assume that to any finite subset N ⊂ M , a choice function xN (v) is

given, which attaches an element of Av to each element v of N : xN (v) ∈ Av . Then there exists a choice

function x(v) defined for all v ∈ M1 (x(v) ∈ Av if v ∈ M1 ) with the following property. If K is any finite

subset of M1 , then there exists a finite subset N (K ⊂ N ⊂ M1) , such that, as far as K is concerned, the

function x(v) coincides with xN (v) : x(v) = xN (v) (v ∈ K) .

Clearly G(R2, {1}) is an infinite graph. The problem of finding the chromatic number of G(R2, {1}) is

enormously difficult. Paul Erdos has mentioned this problem as one of his favourite problems. Although he

could not solve this problem he has made a significant progress towards the solution of this problem with a vital

result using Rado’s lemma and is given as follows:

Theorem 1.2. [3] Let k be a positive integer, and let the graph G have the property that any finite subgraph

is k -colorable. Then G is k -colorable itself.

The Hadwiger-Nelson Problem (HNP): What is the least number χ(R2) of colors required to color the

two-dimensional Euclidean plane R2 so that points x, y ∈ R2 which are unit distance apart gets distinct color.
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Erdos-de Bruijn theorem says that if an infinite graph has a finite chromatic number, then it has a finite

subgraph with the same chromatic number. Because the chromatic number of the n -dim real space is finite, its

chromatic number is the maximum of the chromatic numbers of the finite unit distance graphs in the n -dim
space.

Because of this result people started searching for finite unit distance subgraphs which require the

maximum number of colors. Also see [1, 3, 6, 7, 12].

2. How to Generalize HNP to other Fields?

It is possible to generalize HNP by attempting to assign the colors to the points whose coordinates lie on a

certain subfield E of R . That is, ask for χ(E2) of the graph G(E2) whose vertices are the points of E2 with

an edge connecting any two points (x1, x2) and (y1, y2) whenever (x1 − y1)2 + (x2 − y2)2 = 1.

Let K be any field or any commutative ring with unity. Let K2 = K × K be a graph in which two

vertices (a, b), (c, e) ∈ K2 are adjacent if and only if (a− c)2 + (b− d)2 = 1. It is naturally difficult to compute

the χ(K2). Led by an intuition that χ(R2) may be equal to 7, researchers started looking for finite subgraphs

G ⊂ R2 with as few vertices as possible, and but without any proper 4-coloring. They soon realised that such

subgraphs must have hundreds, if not thousands, of vertices. So it should be prudent to choose G so that

available computational sources can be used to show that χ(G) > 4.

Interestingly the task of finding χ(R2) is related to finding χ(K2) for other rings K as well. In particular,

the values of χ(F 2), for finite fields F , play a significant role. Note that 2 ≤ χ(K2) ≤ χ(L2) ≤ 7 for all subfields

K ⊆ L ⊆ R . By Erdos-de Bruijn result, χ(R2) is the maximum of χ(G) among all finite induced subgraphs

G ⊂ R2 . As every such subgraph G has coordinates in a subfield K ( R which is finitely generated over Q ,

we infer that χ(R2) is the maximum of χ(K2) among all finitely generated subfields K ⊆ R . This maximum

is realised in fact for some number field K .

Two important configurations in the plane which are compass-constructible from Q2 are the equilateral

triangle of side length 1 and the Moser spindle graph.

Moser spindle graph named after Leo Moser and his brother William is an undirected simple graph with

7 vertices and 11 edges. It is also called Hajos graph as it can be viewed as an instance of Hajos construction.

It can be constructed graph theoretically, without reference to geometric embedding, using Hajos construction

starting with two complete graphs on 4 vertices. This construction removes an edge from each complete graph,

merges two of the end points of the removed edges into a single vertex shared by both cliques, and adds a

new edge connecting the remaining two end points of the removed edge. Another way of constructing is as the

complement graph of the utility graph K3,3 by subdividing one of its edges. See Figure 1.

Proposition 2.1. The graph K2 contains a 3-cycle if and only if K contains 1
2 , (That is, K does not have

characteristic 2) and
√

3 .

Proof. If K contains 1
2 and

√
3 then K2 contains an equilateral triangle with vertices (0, 0), (1, 0) and

( 1
2 ,
√
3
2 ). Conversely, suppose K2 contains an equilateral triangle with vertices v1, v2 and v3 ∈ K2 . Assume

that v1 = (0, 0); otherwise one can translate K2 → K2 , be defining v1 → v−v1 . Next one can deem v2 = (1, 0);

else, take v2 = (a, b) with a, b ∈ K . As a2 + b2 = 1, we can rotate K2 → K2 , v → v

(
a −b
b a

)
. [That is, if
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Figure 1.

v2 = (a, b) then v2 → v2

(
a −b
b a

)
means (a, b)

(
a −b
b a

)
= (a2 + b2, 0) = (1, 0)]. Lastly, take v3 = (c, d). As

c2 + d2 = 1 and (c− 1)2 + d2 = 1, we get c2 − 2c + 1 + d2 − c2 − d2 = 0. That is, c = 1
2 and hence d =

√
3
2 .

This completes the proof.

Proposition 2.2. The graph K2 contains a Moser spindle if and only if K contains 1
66 ,
√

3 and
√

11 .

Proof. Look at the Moser spindle graph shown in Figure 1. If K contains 1
66 ,
√

3 and
√

11, then let A = (0, 0),

B = (1, 0) nd C = ( 1
2 ,
√
3
2 ). If D = (a, b) then we have (a − 1)2 + b2 = 1, (a − 1

2 )2 + (b −
√
3
2 )2 = 1. So

a2 − a+ 1
4 + b2 − b

√
3 + 3

4 − a
2 + 2a− 1− b2 = 0. That is, a = b

√
3. This means (b

√
3− 1

2 )2 + (b−
√
3
2 )2 = 1.

That is, 3b2 − b
√

3 + 1
4 + b2 − b

√
3 + 3

4 = 1, 4b2 − 2b
√

3 = 0. That is, 2b2 = b
√

3 or b =
√
3
2 . This implies that

a2−2a+ 1 + 3
4 = 1. That is, a2−2a+ 3

4 = 0. That is a = 2±
√
4−3
2 = 2±1

2 = 3
2 or 1

2 . Take a = 3
2 and disregard

1
2 , we get D = ( 3

2 ,
√
3
2 ). A little more rigorous calculation reveals that E = ( 5

6 ,
√
11
6 ), F = ( 5−

√
33

12 , 5
√
3+
√
11

12 )

and G = ( 15−
√
33

12 , 5
√
3+3
√
11

12 ). The converse can be done as in the above proposition.

In view of the Proposition 2.1 we deduce that the smallest number field K for which K2 contains a

3-cycle, is when, K = Q(
√

3). In this case, it is clear that χ(K2) ≥ 3. In order to see the upper bound, we

have to consider a real quadratic extension of Q , i.e., a filed of the term K = Q(
√
d) for some square free

integer d ≥ 2. We know that, for a prime p ≡ 3 (mod 4) if d ≡ 0 (mod p) or d is a quadratic residue modulo

p , then χ(K2) ≤ χ(F 2
p ). Now let q be a prime power. Form a graph F 2

q with adjacency relation as usual

following euclidean `2 -norm. Then the graph F 2
q has q2 vertices, and is regular of degree q , if q is even; q− 1

if q ≡ 1 (mod 4); and q + 1 if q ≡ 3 (mod 4). With some computer assistance one can show that χ(F 2
3 ) = 3.

So we get χ(K2) ≤ 3. Hence χ(K2) = 3.

3. Some Notes on the Determination of χ(G(R2, {1}))

It is obvious that G(R2, {1}) is not a trivial graph. Therefore χ(G(R2, {1}) 6= 1. The presence of at least one

edge, viz., between (0, 0) and (1, 1) in G(R2, {1}) conveys the information that χ(G(R2, {1})) ≥ 2. Similarly,

the presence of a clique of size 3, viz., K3 with vertices at (0, 0), ( 1
2 ,
√
3
2 ), (1, 0) shows that χ(G(R2, {1})) ≥ 3.
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Moreover, it is a fact that four points in the euclidean two dimensional plane cannot have pairwise odd integer

distances. Note that four points in a plane with pairwise odd integral distances do not exist. This is because of

the following result by L. Piepmeyer.

Theorem 3.1. [10] The maximum number f(n) of odd integral distances between n points in the plane is

f(n) =
n2

3
+
r(r − 3)

6
, r = 1, 2, 3 and n ≡ r (mod 3).

Therefore, a clique of size 4, viz., K4 cannot be an induced subgraph of G(R2, {1}). But it will be quite

interesting to find the coordinates of a unit distance finite subgraph G1 of G(R2, {1}) such that χ(G1) = 4.

The Moser spindle graph is a smallest such graph with chromatic number 4. Then it is interesting to

note that so far no unit distance graph that requires exactly five colors are known. Falconer [6] showed that

if the color classes form measurable sets of R2 , then atleast five colors are needed. Since the construction of

non-measurable sets requires the axiom of choice, we might have the answer turn out to depend on whether or

not we accept the axiom of choice. We can tile the plane with hexagons as below Figure 2 to obtain a proper

7-coloring of the graph. The result is originally due to Hadwiger and Debrunner [8].

4

4

4

3

3 3

5

5

5

1

1

2

7

6

6

Figure 2.

For each point inside the hexagon, color that point with the number inside the hexagon. For each point

on an edge or vertex, color it with the lowest color of the hexagons incident to it. If the side length of the

hexagon is slightly less than one half, no two poins in or on the boundary of the single hexagon are at a distance

one from each other. Also, the distance between any two hexagons of the same color is greater than one, so we

have a proper seven coloring of the plane with seven colors. Hence 4 ≤ χ(G(R2, {1})) ≤ 7.

We would also tile the plane with squares instead of hexagons, and obtain a proper 9-coloring of the

plane. This can be extended to cubes in three dimensions, for a proper 27 coloring of R3 . We cannot extend

this directly to arbitrary dimension because, in high dimension, the diagonal of the cube gets large compared

to the side length.

R2 R3 R4 R5 R6 R7 R8

LB 4 6 7 9 11 15 16
UB 7 15 54
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In general, (1.239 + o(1))n ≤ χ(Rn) ≤ (3 + o(1))n [12].

4. Konig’s Lemma and its Useful Consequences

Lemma 4.1 (Konig’s Lemma). Suppose that (T, t0) is a rooted tree at t0 on N0 -many vertices, and suppose

that the degree of every vertex is finite. Then there is an infinite descending path in T starting at t0 .

Proof. Let Tv denote the tree acquired by taking v and all of the paths that descend from v in our tree T .

We create the required path by induction. Start at t0 . If we have made it to some vertex v . Let v1, . . . , vn be

the descendents of v , and take as our inductive hypothesis the claim that Tv has infinitely many vertices in it.

Then the trees Tv1 , Tv2 , . . . , Tvn form a partition of the vertex set of Tv − {v} . As Tv − {v} has infinite set of

vertices, the pigeonhole principle tells us that one of these trees must contain infinitely many vertices. Let Tvi
be that tree and go to vi . Repeating this process yields an infinite path descending through T , starting at t0 .

The depth of the consequence of Konig’s lemma is highly surprising.

Corollary 4.1. Suppose that G is a graph on N0 -many vertices, such that any finite subgraph of G canbe

k -colored. Then G can be k -colored.

Proof. Create a tree as follows: Enumerate the vertices of G as {vi}∞i=1 , and let the levels Ln of our tree be

given by the collection of all k -colorings of {v1, . . . , vn} . Draw an edge from any k -coloring of {v1, . . . , vn} to

a coloring of {v1, . . . , vn+1} iff the coloring of n+ 1 vertices extends our coloring of n vertices. This is then a

tree. It has infinitely many vertices, and the degree of any vertex is finite. This by Konig’s Lemma, there’s an

infinite path. This path made of colorings that all agree with each other then gives a k -coloring of all of G .

The above motivates the following question: For countable graphs, to demonstrate k -colorability, it

suffices to simply work on the collection of all finite graphs. Does the same hold for uncountable graphs?

Specifically, to find the chromatic number of the plane, does it suffice to create an upper bound on all finite

graphs embedded in the plane, with edges given by straight line segments of length 1? It turns out that the

answer is yes.

5. Limitation of Erdos-de Bruijn Result

One limitation of Erdos-de Bruijn result, has however remained a low key. They used Axioms of Choice, AC. So

it is natural to ask, what if we have no choice? Absence of choice-in mathematics as in life may affect outcome.

Consider the following example of a distance graph on the real line R , whose χ depends upon the systems

of axioms we choose for set theory. The example shows how the value of χ can be dramatically affected by the

inclusion or the exclusion of the AC in the system of axioms for sets.

In 1904 Zermelo [15] formalized the AC that had previously been used informally.

Axioms of Choice (AC): Every family φ of non empty sets has a choice function, that is, there is a function

f such that f(s) ∈ S for every S from φ .

Many results in mathematics really need just a countable version of choice.

Countable AC (AC N0 ): Every countable family of non empty sets has a choice function.

In 1942, Bernays [2] introduced the following axiom.
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Principle of Dependent Choices (DC): If E is a binary relation on a non empty set A , and for every

a ∈ A there exists b ∈ A with aEb , then there exists a sequence a1, a2, . . . , an such that anEan+1 ∀ n < w .

AC implies DC (See Theorem 8.2 in [9] for example) but not conversely.

In turn, DC implies AC N0 , but not conversely. DC is a weak form of AC and is sufficient for the classical

theory of Lebegue measure. In particular, DC is sufficient for Falconer’s result [6] formulated in question above.

We will make use of the following axiom:

Lebegue Measurable (LM): Every set of real numbers is Lebegue Measurable.

As always, ZF stands for Zermelo - Fraenkel system of axioms for sets, and ZFC = ZF + AC.

Assuming the existence of an inaccessible cardinal, Solovay constructed in 1964 (and published in 1970)

a model that proved the following consistency result [13].

Theorem 5.1 (Solovay Theorem). [13] The system of Axioms ZF + DC + LM is consistent.

As Jech [9] observes in the Solovay model, every set of reals differs from a Borel set by a set by a set of
measure zero.

Finally we say a set X ⊆ R has the Baire property if there is an open set U such that X∆U (Symmetric

difference) is meager (or of first category) i.e., a countable union of nowhere dense sets.

Example : We define a graph G as follows: the set R of real numbers serves as the vertex set, and the set of

edges in {(s, t) : s− t−
√

2 ∈ Q} .

Claim 1: In ZFC, χ(G) = 2.

Let S = {q + n
√

2 : q ∈ Q,n ∈ Z} . Define an equivalence relation E on R as : sEt iff s − t ∈ S . Let

Y be a set of representatives for E . For t ∈ R , let y(t) ∈ Y be such that tEy(t). We define a 2-coloring c(t)

as follows: c(t) = ` , ` = 0, 1 iff there exists n ∈ Z such that t− y(t)− 2n
√

2− `
√

2 ∈ Q .

Without AC the chromatic situation changes dramatically.

Claim 2: In ZF + ACN0 + LM, χ(G) 6= any positive integer n nor even to N0 .

The proof follows from the first of the following two statements.

1. If A1, A2, . . . , An, . . . are measurable subsets of R and
⋃
n<w

An ⊇ [0, 1), then atleast one set An contains

two adjacent vertices of the graph G .

2. If A ⊆ [0, 1) and A contains no pair of adjacent vertices of G then A is null (of Lebegue measure zero).

We can replace ZF + LM by ZF + “Every set of real numbers has the property of Baire”. Is AC relevant

to χ(R2)? The answer depends upon the value of χ which we do not know yet.

Conditional Theorem: Assume that any finite UDG (plane) has χ 6> 4. Then in ZFC χ(R2) = 4, In ZF +

DC + LM, χ(R2) is 5, 6 or 7.

Proof. The above claim is true due to [3]. The system implies that every subset S of R2 is Lebegue measurable.

Indeed, S is measurable iff there is a Borel set B such that the symmetric difference S∆B is null. Thus, every
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plane set differs from a Borel set by a null set. We can think of a unit segment I = [0, 1] as a set of infinite binary

tractions and observe that the bijection I → I2 defined as 0.a1a2 . . . an → (0.a1a3 . . . ; 0.a2a4 . . . ) preserves null

sets. Due to Falconer result [6], we can now conclude that χ(R2) ≥ 5.

The problem of finding χ(R2) has withstood all assaults in the general case, leaving us a wide range of

X being 4, 5, 6 or 7 precisely because the answer depends on the system of axioms we choose for set theory.

6. Role of Axiom of Choice

If, instead of χ(G), we work with “finite limit chromatic number” χfin(G), which is defined as the upper

bound of χ(G0) for all finite subgraphs G0 of G , then we may not require axiom of choice. But the question

of computing χfin(R2) is precisely the same as that of computing χ(R2) in the presence of axiom of choice.

Observe that the statement χfin(R2) = n is an arithmetical one (i.e., the one that can be stated in the

language of first order arithmetic, viz., the one which states that every finite unit distance graph with real

algebraic coordinates can be colored with n colors and atleast one requires this number of colors), its truth

value does not depend on the axiom of choice. (because, the Godel constructible universe L has the same

integers, so the same true arithmetical statements as the real universe V of set theory). So one might claim

that right HNP in the absence of axiom of choice concerns the value of χfin(R2), not χ(R2) (which might be

aritifically higher bcause certain colorings are not available in the absence of choice) the value of χfin(R2) is a

purely arithmetical question and therefore independent of set theoretic subtleties.

Note: The fields of characteristic 2 gets out of the ways because, if E is a field of char 2, then

(y1 − x1)2 + (y2 − x2)2 = 1 is equivalent to (y1 − x1) + (y2 − x2) = 1. That is, λ(y − x) = 1 where λ is

the E -linear from (z1, z2)→ z1 + z2 . Complete 1 to be a basis of E as an F2 vector space (this uses axiom of

choice) and let λ̂(z) be the coordinate on 1 of λ(z). Then we get a coloring of E2 with two colors if we choose

the color of x according to the value of λ̂(x) ∈ F2 . As 1 color does not suffice, this shows that χ(E2) = 2.

7. Graph Dimension and Chromatic Number

By dim G , dimension of a graph G we mean the least integer n such that G can be embedded into Rn with

every edge of G having length 1. We refer to such a embedding as unit-embedding. So if dim G = n , then there

exists 1-1 mapping f : V (G) → Rn , defined as f(vk) = (xk1
, xk2

, . . . , xkn
) such that vkvj ∈ E(G) whenever

n∑
i=1

(xki
− xji)2 = 1.

The dim of a graph is related to many open problems in discrete geometry. The HNP, which seeks to

determine the least number of colors needed to properly color the points of R2 that are unit distance apart can

be reduced to finding the largest possible chromatic number of a finite graph of dimension 2. Generalizations

of HNP to higher dimensions n reduce to finding the largest possible chromatic number of a graph of dim n .

Since no systematic method for finding the dimension of an arbitrary graph is known, bounding the

dimension of such graphs is an area of graph theory ripe for discoveries.

Note that we can deem platonic polyhedral graphs to be the 3-regular graphs which are the skeletons

of platonic solids. The cube has dimension 2 and the tetrahedron, octahedron, dodecahedron and icosahedron

have dim 3.

It is interesting to observe that dim(Kn) = n−1. To see this, note that a vertex set of a unit embedding
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of Kr+1 is no more than a set of (r + 1) equidistant points. So it is enough to find a least positive integer m

such that Rm contains such a set of (r + 1) points is when m = r . Let us assume that each such equidistance

is unity and v0 is the origin. Let v1 , v2 , . . . , vk be k vectors between v0 and the other r equidistance

points v1, . . . , vr in our set. As vivi = 1 for all 1 ≤ i ≤ r and ‖vi − vj‖ = 1 for all i 6= j , we have

(vi.vi)
2 − 2(vivj) + (vj .vj)

2 = 1 and hence vi, vj = 1
2 . So one can construct the gram matrix GM(v1, . . . , vr)

where GM(v1, . . . , vr) =

∣∣∣∣∣∣∣∣
1 1

2 . . . 1
2

1
2 1 . . . 1

2
. . . . . .
1
2

1
2 . . . 1

∣∣∣∣∣∣∣∣ . We know that this det is non-zero iff v1, . . . , vr are linearly

independent. GM(v1, . . . , vr) has eigen value 1
2 with multiplicity r − 1. As trace is the sum of eigen values

we get tr(GM(v1, . . . , vr)) =

r∑
i=1

λi = (r − 1)
1

2
+ λr showing λr = (r+1)

2 . As the above matrix does not have

0 as eigen value its determinant is non-zero. So v1, . . . , vr are linearly independent. Since Rm can contain r

linearly independent vectors iff m ≥ r , we see that r+ 1 equidistant points v1, . . . , vr can be embedded in Rm

iff m ≥ r . So it follows that dim Kr+1 = r and hence dim(Kn) = n− 1.

Also note that if G can be unit-embedded in Rdim G , then so is H ⊆ G . Then dim G ≥ dim H . As

w(G) is the order of the greatest clique of G , we conclude that dim(G) ≥ w(G)− 1. Then while partitioning

G into χ -partite graph where each partite is of the same color we can deduce that dim G ≤ 2χ(G).

References

[1] Alexander Soifer. Chromatic number of the plane and is relatives I. The problems its history, Geocombinatorics

2003; 12(3): 131–148.

[2] Bernays BP. A system of axiomatic set theory III. J. Symbolic Logic 1942; 7: 65–89.

[3] de Bruijn NG, Erdos P. A color problem for infinite graphs and a problem in the theory of relations. Proceedings

Series A. 54(5) and Indag. Math. 1951; 13(5).

[4] Eggleton RB, Erdos P, Skilton DK. Coloring the real line. J. Combinatorial Theory, Ser. B 1985; 39: 86–100, to

erratum 1986; 41: 139.

[5] Eric Moorhouse G. On the chromatic numbers of planes, Preliminary Draft. revised, 3 March 2010, Source : Google.

[6] Falconer KJ. The realization of distance in measurable subsets covering in Rn . J. Combin Theory Ser. A 1981;

31(2): 181–189.

[7] Gardner M. Mathematical Games. Scientific Amer. 1960; 203(4): 180.

[8] Hugo Hadwiger, Hans Debrunner. Combinatorial geometry in the plane. Holt, Rinehart and Winston, Newyork,

1964.

[9] Jech JTJ. The axiom of choice. North Holland, Amsterdam, 1973.

[10] Piepmeyer L. The maximum number of odd integral distances between points in the plane. Discrete Comput

Geometry 1996; 16: 113–115.

[11] Rado R. Axiomatic treatment of rank in infinite sets. Canad. J. Math. 1949; 1: 337–343.

[12] Raigorodskij AM. Borsuk’s problem and ch no.s of some metric spaces. Russ Math Surv 2001; 56(1): 103–139.

[13] Solovay RM. A model of set theory in which every set of reals is Lebeque measurable. Ann. of Math. (Ser. 2) 1970;

92: 1–56.

68



V. Yegnanarayanan

[14] Yegnananarayanan V. Chromatic number of graphs with special distance sets I. Algebra and Discrete Mathematics

2014; 17(1): 135–160.

[15] Zermelo E. Beweiss class jede Menge wohlgeordrnet. Warden Kann Math. Ann. 1904; 59: 514–516.

69


	Introduction
	How to Generalize HNP to other Fields?
	Some Notes on the Determination of (G(R2, {1}))
	Konig's Lemma and its Useful Consequences
	Limitation of Erdos-de Bruijn Result
	Role of Axiom of Choice
	Graph Dimension and Chromatic Number

