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Abstract 

In this paper, we introduce the notion of (strongly) GF-projective modules. We show that a 
module is projective if and only if it is GF-projective and its Gorenstein flat dimension is at 
most 1, if and only if it is strongly GF-projective and Gorenstein flat. Moreover, we 
investigate (global) GF-projective dimensions of modules and rings, and some applications 
are presented.  
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Introduction 

Throughout this article, R is an associative ring with identity and all modules are unitary. 

Unless stated otherwise, an R-module will be understood to be a left R-module. As usual, 

pdR(M), idR(M) and fdR(M) will denote the projective, injective and flat dimensions of an R-

module M, respectively and l.gldim(R) will denote the left global dimension of ring R. For an 

R-module M, M* stands for the character module of M. For unexplained concepts and 

notations, we refer the reader to [11]. 

Recall that a ring R is called Gorenstein if it is n-Gorenstein for some non-negative integer 

n (a ring R is called n-Gorenstein if it is a left and right Noetherian ring with self-injective 

dimension at most n on both sides for some non-negative integer n). Clearly, Gorenstein rings 

are natural generalizations of quasi-Frobenius rings (a ring R is called quasi-Frobenius if it is 

a left and right Noetherian ring and it is an injective left R-module). In the relative 

homological algebra, Gorenstein rings play an important role and non-commutative 

Gorenstein rings were defined and studied by Iwanaga in [8] and [9]. Later Enochs and Jenda 

defined and studied the so-called Gorenstein projective, Gorenstein injective and Gorenstein 

flat modules and developed Gorenstein homological algebra, see [2] for details. 
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