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Abstract

In this paper, we introduce the notion of (strongly) GF-projective modules. We show that a
module is projective if and only if it is GF-projective and its Gorenstein flat dimension is at
most 1, if and only if it is strongly GF-projective and Gorenstein flat. Moreover, we
investigate (global) GF-projective dimensions of modules and rings, and some applications
are presented.
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Introduction

Throughout this article, R is an associative ring with identity and all modules are unitary.
Unless stated otherwise, an R-module will be understood to be a left R-module. As usual,
pdr(M), idr(M) and fdr(M) will denote the projective, injective and flat dimensions of an R-
module M, respectively and /.gldim(R) will denote the left global dimension of ring R. For an
R-module M, M* stands for the character module of M. For unexplained concepts and
notations, we refer the reader to [11].

Recall that a ring R is called Gorenstein if it is #n-Gorenstein for some non-negative integer
n (a ring R is called n-Gorenstein if it is a left and right Noetherian ring with self-injective
dimension at most 7 on both sides for some non-negative integer ). Clearly, Gorenstein rings
are natural generalizations of quasi-Frobenius rings (a ring R is called quasi-Frobenius if it is
a left and right Noetherian ring and it is an injective left R-module). In the relative
homological algebra, Gorenstein rings play an important role and non-commutative
Gorenstein rings were defined and studied by Iwanaga in [8] and [9]. Later Enochs and Jenda
defined and studied the so-called Gorenstein projective, Gorenstein injective and Gorenstein
flat modules and developed Gorenstein homological algebra, see [2] for details.
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It is well-known that the projective, injective and flat dimensions of modules play an important role. In
the 2004’s, the closely related Gorenstein projective, Gorenstein injective and Gorenstein flat dimensions
were given and studied by H. Holm [6]. The Gorenstein injective dimension, Gidg(M), of an R-module M
is defined by declaring that Gidr(M) < n if and only if M has a Gorenstein injective resolution of length
n. Similarly, one defines the Gorenstein projective dimension, Gpdgr (M), and Gorenstein flat dimension,
Gfdr(M), of M, respectively. To study the homological properties of Gorenstein homological algebra
more precisely, in [3, 4], Z. Gao studied the Ext-orthogonal and Tor-orthogonal modules of Gorenstein
injective modules, and in [12, 13], T. Zhao further studied the Ext-orthogonal modules of Ding projective
[5] (or strongly Gorenstein flat [1]) and Ding injective [5] (or Gorenstein FP-injective [10]) modules.
Inspired by this, we will introduce the concept of G F-projective modules in terms of the Ext-orthogonality
of Gorenstein flat modules and discuss the GF-projective dimensions of modules and rings.

In Section 2, we give the concept of GF-projective modules, and present some of the general properties.
We show that an R-module M is projective if and only if M is GF-projective and GfdrM < 1, if and
only if M is strongly GF-projective and Gorenstein flat; moreover, (SG,SG J‘) is a hereditary cotorsion
theory, where SG is the class of strongly GF-projective modules. We also show that over an n-Gorenstein
ring, every (strongly) G F-projective right R-module is (strongly) GI-flat and a finitely generated right
R-module is (strongly) GI-flat if and only if it is (strongly) GF-projective. In Section 3, we give the
notions of the GF-projective dimension, |.GF-pdg(M), of an R-module M and the global G F-projective
dimension of a ring R, defined by [.GFdim(R) = sup{l.GF-pdr(M)|M is an R-module}. Moreover, we

define the so-called “global” dimension of rings R:
I.GF-ID(R) = sup{idr(M)|M is Gorenstein flat R-module}.

and show that [.GFdim(R) = [.GF-ID(R). In addition, other applications of those dimensions defined

in this way are presented.
2. THE GF-PROJECTIVE MODULES
We begin with the following.

Definition 2.1. An R-module M is called GF-projective if ExtE(M ,IN) = 0 for any Gorenstein flat
R-module N.

By the definition, we have the following result.

Lemma 2.2. The class of GF-projective R-modules is closed under extensions, direct sums and direct

summands.

Clearly, every projective module is G F-projective, but the converse is not true in general as shown in

the following.
Proposition 2.3. An R-module M is projective if and only if M is GF-projective and I.Gfdr(M) < 1.

Proof. = It is trivial.

< Let M be a GF-projective R-module. Consider an exact sequence 0 - K — P — M — 0 of
R-modules with P projective. Because I.G fdr(M) < 1, K is Gorenstein flat, and so Extp(M, K) = 0.
Thus 0 - K — P — M — 0 is split. Therefore M is projective as a direct summand of P. O
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Let F be a class of R-modules. By an F-preenvelope of an R-module M we mean a morphism
¢ : M — F where F € F such that for any morphism f : M — F with F' € F, there is a morphism
g : F — F such that go o = f. If furthermore, when F' = F and f = ¢ the only such g are
automorphisms of F, then ¢ : M — F is called an F-envelope of M. Dually, we have the definition of
F-(pre)cover of an R-module. Note that F-envelopes and F-covers may not exist in general, but if they
exist, they are unique up to isomorphism.

Next we give some characterizations of G F-projective R-modules.

Proposition 2.4. Let M be an R-module. Then the following are equivalent:

(1) M is GF-projective;

(2) For every exact sequence 0 —= L . N — M — 0, where N is Gorenstein flat, f : L — N is
a Gorenstein flat preenvelope of L;

(3) M is a cokernel of a monic Gorenstein flat preenvelope g : A — B with B projective.

(4) The functor Homg(M, —) is exact with respect to each exact sequence
0—A-%B-5%C—0

with A Gorenstein flat.

Proof. (1)=(2) Assume M is GF-projective. For every exact sequence
0L N—>M—0,
where N is Gorenstein flat, we have the following exact sequence
Homp(N, F) *> Homp(L, F) —> ExtL (M, F) ,

where F is Gorenstein flat. By Definition 2.1, Exth (M, F) = 0, and hence Homg (N, F) — Hompg(L, F)
is an epimorphism, that is, for any h : L — F, there exists ' : N — F such that f*(h') = h'f = h.
Hence f: L — N is a Gorenstein flat preenvelope of L.

(2)=(3) is trivial.

(3)=(1) By the hypothesis, there is an exact sequence 0 —> A —> B —> M —>0. Then for any

Gorenstein flat R-module N, we have the following exact sequence
Hompg(B, N) 2> Homp(A, N) — Exth(M, N) — Exth(B,N) =0 .

On the other hand, it is easy to verify that Hompg(B, N) — Homp(A, N) — 0 is exact by (3). Thus
Extp(M,N) = 0 and hence M is GF-projective.
(1) = (4) is trivial.
(4) = (1) For any Gorenstein flat R-module N, there exists an exact sequence
0—N-—F—L—0
with F injective, which induces the following exact sequence

Hompg(M, E) — Homp(M, L) — Ext},(M, N) — Ext(M,E) =0 .

By (4), Homp (M, E) — Homp(M,L) — 0 is exact. Hence Extk(M, N) = 0 for any Gorenstein flat
R-module N. Thus M is GF-projective. O

Recall from [2] that an R-module is called coreduced if it has no nonzero projective quotient modules.
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Corollary 2.5. For an exact sequence 0 —= L A P — M — 0 with P projective, if f is a Gorenstein

flat envelope, then M is coreduced G F-projective.

Proof. By Proposition 2.4, M is G F-projective, so it suffices to show that M is coreduced. Assume that
Q@ is a projective quotient module of M, then P = Q ®r N for some R-module N. Let p: P — N is
the projection and ¢ : N — P the inclusion. Then ipf = f since f(L) C N. Hence ip is an isomorphism

since f is an envelope. This implies that i is epic and so = 0, which means that M is coreduced. [

Let M be an R-module. We will call M strongly GF -projective if EXt%(M ,N) = 0 for any Gorenstein
flat R-module N and any i > 1.

Lemma 2.6. Let M be strongly GF-projective. Then
(1) Extgp(M, N) =0 for any R-module N with 1.G fdr(N) < co.
(2) either M is projective or l.Gfd(M) = co.

Proof. (1) Since l.Gfdr(N) < oo, we may assume that I.G fdr(N) = n < co. Then we have the following
exact sequence

0—>ﬁn—>ﬁn_1—>---—>ﬁ1—>ﬁ0—>N—>0
with each E Gorenstein flat. Let L_; = N, L; = Im(l?}; — E_l) for0<i<n-—1and L, = }7’" Then

0—L; — E — L, 1 —0,1<1<n, are exact. Hence we have
Exth(M,N) = Ext}(M, Lo) & --- = Ext" (M, L, 1) = Ext’5"2(M, F,).

So we have Extp(M, N) = Ext};™(M, F,) =0.
(2) Assume that I.Gfdr(M) < oo and consider an exact sequence 0 — L — P — M — 0 with
P projective. Since I.G fdr(M) < o0, I.Gfdr(L) < oc. This implies that Extp(M, L) = 0 by (1), so this

sequence is split and hence M is projective. O

Corollary 2.7. An R-module M is projective if and only if it is strongly GF-projective and Gorenstein
flat.

Proposition 2.8. Let R be an n-Gorenstein ring and M an R-module. Then the following are equivalent:
(1) M is strongly GF-projective;
(2) Extr(M, N) =0 for any R-module N;
(3) Ext’ (M, N) =0 for any R-module N and any i > 1.

Proof. (1)=(2) Note that I.Gfdr(M) < n since R is an n-Gorenstein ring by [2, Theorem 12.3.1]. By
Lemma 2.6, this result holds.

(2)=(3) It is ecasy by the dimension shifting.

(3)=(1) By (3), M is projective. It follows from the fact that every projective module is strongly
G F-projective. a

Lemma 2.9. Let M be a GI'-projective R-module. Then for every exact sequence 0 — L —> P — M — 0

with P projective, M is strongly GF-projective if and only if L is strongly G F-projective.

Proof. = 1t is easy.
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< Let L be strongly GF-projective. For every exact sequence 0 — L — P — M — 0 with P

projective, we have the following exact sequence
0 = Extly (L, F) — Ext (M, F) — ExtL(P,F) =0, i>2

with F' Gorenstein flat. So Extz (M, F) = 0 for i > 2. Moreover, Exty(M, F) = 0 by the hypothesis.
Thus M is strongly G F-projective. 0

Given a class C of R-modules, we will denote by C+ = {M | ExtL(C, M) = 0 for all C € C} the right
orthogonal class of C, and by +C = {M | Exty(M,C) = 0 for all C' € C} the left orthogonal class of C.
A pair (F,C) of classes of R-modules is called a cotorsion theory if F* = C and +C = F. A cotorsion
theory (F,C) is said to be hereditary if whenever 0 — L' — L — L” — 0 is exact with L,L"” € F,

then L' is also in F, or equivalently, with L, L’ € C, then L” is also in C.

Proposition 2.10. Let §G be the class of strongly G F-projective R-modules, then (SQ,SQJ‘) s a hered-

itary cotorsion theory.

Proof. Clearly, SG C+ (8G*1). It suffices to show L(SGY) € 8G. Let M € 8G and N € SG*,
consider the exact sequence 0 — K — P — M — 0 with P projective, we have EXt%Z(M ,N) =
Ext}q(K ,N). Moreover, consider the exact sequence 0 — N — E —V — 0 with F injective, then
we have Ext}(M, V) = Ext%(M, N) = 0, and hence V € SG*. Now let L €+(SG"), then Ext% (L, N) =
Extx(L,V) = 0. By induction, we have Ext4(L, N) = 0 for all i > 0. In particular, Ext’(L,G) = 0 for
all Gorenstein flat R-modules G and all ¢ > 0. Thus L € SG.

Finally, (SG, SQJ‘) is hereditary by Lemma 2.9. a

Proposition 2.11. Let M be an R-module. If Ext%(M, N)=0 for any i with 1 <i<n+1 and any
Gorenstein flat R-module N, then every kth syzygy of M is GF-projective for 0 < k < n.

Proof. Let Ly, be a k-th syzygy of M. Then we have the following exact sequence
O—Ly,—PFP,1—>-—>P—F—M-—0

with each P;, 0 < < k—1, projective. For any Corenstein flat R-module N, we have that Exty,(Ly, N) &
Ext’;’;'l(M, N). Note that Ext]f_-iH(M, N) = 0 by the hypothesis, and so Ext}%(Lk, N) = 0, which means
that Ly is GF-projective. O

Recall that a right R-module M is called GI-flat [4] if Torf’(M ,N) = 0 for any Gorenstein injective R-
module N, and M is called strongly GI-flat [4] if Tor’ (M, N) = 0 for any Gorenstein injective R-module
N and any ¢ > 1.

Next we discuss the relation between GF-projective and GI-flat modules.

Lemma 2.12. Let R be an n-Gorenstein ring. Then every (strongly) GF -projective right R-module is
(strongly) GI-flat.

Proof. Let N be a Gorenstein injective left R-module. Since R is n-Gorenstein, by [2, Corollary 10.3.9],
N* is Gorenstein flat. Moreover, we have the following standard isomorphisms: Ext% (M, N*) = Tor®(M, N)*
for all # > 1. So the result holds. O
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Lemma 2.13. Let R be a right noetherian ring. Then every finitely generated (strongly) GI-flat right
R-module is (strongly) GF -projective.

Proof. Let M be finitely generated. Since R is right noetherian, by [11, Theorem 10.66], we have an
isomorphisms: Ext’s (M, N)* = Torf(M ,N*) for all i > 1. Let N be a Gorenstein flat right R-module,
then N* is Gorenstein injective by [2, Proposition 10.3.3]. So the result holds. g

Proposition 2.14. Let R be a Gorenstein ring and M a finitely generated right R-module. Then M is
(strongly) GI-flat if and only if M is (strongly) GF -projective.

Proof. 1t follows immediately from Lemmas 2.12 and 2.13. g

We call a ring R left Gorenstein perfect if every Gorenstein flat R-module is projective.

Proposition 2.15. The following are equivalent:
(1) R is left Gorenstein perfect;
(2) Every Gorenstein flat R-module is GF-projective;
(3) Every Gorenstein flat R-module is strongly G F-projective.

Proof. (1)=(3)=-(2) are clear.

(2)=(1) Let N be Gorenstein flat. Then we have an exact sequence 0 — K — P — N — 0 with
P projective. Since N is Gorenstein flat, K is Gorenstein flat by [2, Theorem 10.3.14]. Moreover N
is GF-projective by (2). Thus Exti(N, K) = 0. Therefore 0 —= K — P — N — 0 is split, which

means that N is projective as a direct summand of P. |

3. THE GF-PROJECTIVE DIMENSION OF MODULES AND RINGS

We know that the homological dimension is a valuable tool in homological algebra and a number
of well-known theorems can be reformulated in terms of the homological dimension. Therefore, it is
interesting and valuable to study the homological dimension in details.

We begin with the following definition.

Definition 3.1. Let R be a ring. The left GF-projective dimension, l.GF-pdr(M), of an R-module M
is defined to be the smallest non-negative integer n such that ExtzH(M ,N) = 0 for any Gorenstein flat
left R-module N. The left global GF -projective dimension, |.GFdim(R), of R is defined as

I.GFdim(R) = sup{l.GF-pdr(M)|M is an R-module}.

Similarly, we can define r.GFdim(R). If R is commutative, we drop r and .
If M is strongly GF-projective, we set [.GF-pdr(M) = 0.

Proposition 3.2. Let M be an R-module. Then the following are equivalent:
(1) LGFpdn(M) < n;
(2) EXt%-H(M, N) =0 for all Gorenstein flat R-modules N and all i > 1;

(3) For every exact sequence
0—L,—P, 11— —P—>P—M-—0,

where P;, 0 <1 <n—1 are projective, then L,, is strongly GF -projective;
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(4) There exists an exact sequence
0—>f’n—>f’n_1—>~-—>f’1 —>]30—>M—>O
with each P, strongly GF'-projective.
Proof. (1)=(2) It is easy.
(2)=(3) For every exact sequence
0O—0L,—PFP,_1——P—PFP—M-—0

with each P;, 0 < i < n — 1 projective. Let Ly = M, L; = Im(P; — P;_1) for 1 < j < n —1, then

0—L; — P; — L;_1 —=0 are exact. So we have the following
Ext}y(Ln, N) = Extif ! (L1, N) 2 -+ 2 Ext{f " (M, N).

Thus Ext’(Ln, N) = Exty"(M, N) = 0 for any Gorenstein flat R-module N by (2), and so L, is strongly
GF-projective.
(3)=(4) It is trivial.

(4)=(1) For every exact sequence
O—>F~’n—>]3n_1—>~-—>-f’1 —>-]30—>M—>-0

with each P strongly G F-projective. Let Ky = Ker(f’o - M), Kiy1 = Ker(f’i — f’i_l) for ¢ > 1. Since
cach P is strongly GF-projective, we have Ext;t (M, N) = Exth(K;,N) = ... = Exth(P,,N) = 0
where N is Gorenstein flat. So I.GF-pdr(M) < n. d

Now we define the following so-called “global” dimension of rings.

Definition 3.3. Let R be a ring. We define
I.GF-ID(R) = sup{idgr(M)|M is Gorenstein flat R-module}.
If I.GF-ID(R) = 0, then we call that R is a left GFI ring.

Firstly, we have the following results.

Proposition 3.4. Let R be a ring. Then
I.GF-ID(R) = sup{idg(M)|M is an R-module with I.Gfdr(M) < oc}.

Proof. (1) It is clear that

[.GF-ID(R) < sup{idr(M)|M is an R-module with [.G fdr(M) < co}.
So we only need to show that

sup{idr(M)|M is an R-module with I.Gfdr(M) < oo} < I.GF-ID(R).

If I.GF-ID(R) = oo, then we have completed the proof. So we assume that I.GF-ID(R) < co. For any
R-module M with [.Gfdgr(M) =n < co, by the definition, there exists an exact sequence

0—F,— - —F—F—M-—0
with each F; Gorenstein flat. Clearly, idr(F;) < I.GF-ID(R). Let Ly = M, L; = Im(F;, — F;_1),

L, = F,, then for every short exact sequence 0 — L; — F; — L;_1 —= 0, we have the fact that
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idr(L;) < I.GF-ID(R) and idg(F,) < .GF-ID(R) imply idg(L;_1) < [.GF-ID(R), and hence idg(M) <
[.GF-ID(R), as desired. O

Next we give a relation of the left global GF-projective dimension [.GFdim(R) and {.GF-ID(R).
Proposition 3.5. Let R be a ring. Then l.GFdim(R) =1.GF-ID(R).

Proof. We first show that [.GFdim(R) < I.GF-ID(R). If .GF-ID(R) = oo, then we have completed the
proof. So we assume that I.GF-TD(R) = m < oo. Let M be an R-module, then Ext? "' (M, N) = 0 for
any Gorenstein flat R-module N since idgr(N) < m by the hypothesis, and hence I.GF-pdr(M) < m.
This show that I.GFdim(R) < m = [.GF-ID(R).

Now we show that [.GF-ID(R) < I.GFdim(R). Indeed, assume that [.GFdim(R) = n < oo. For
any Gorenstein flat R-module N, let M be an R-module, it follows that I.GF-pdr(M) < n, and so
Ext);" (M, N) = 0, which induces that idg(N) < n. Thus .GF-ID(R) < n = L.GFdim(R), as
desired. g

Corollary 3.6. Let R be a ring. Then R is a left GFI ring if and only if every R-module is GF -projective,
if and only if every R-module is strongly G I'-projective.

Remark 3.7. By the above, I.GFdim(R) measures how far away a ring is from being left GF1I.

Corollary 3.8. Let R be a ring. Then the following are equivalent:
(1) .GFdim(R) < 1;
2) I.GF-ID(R) < 1;
3) Every submodule of a GF-projective R-module is GF'-projective;

(2)

(3)

(4) Every submodule of a projective R-module is GF -projective.

(5) Every submodule of a strongly GF -projective R-module is strongly GF -projective;
(6)

6) Every submodule of a projective R-module is strongly G F-projective.

Proof. (1)<(2) It is trivial by Proposition 3.5.

(2)=(3) Let L be a submodule of a GF-projective R-module M. Then we have the following exact
sequence

Extp(M, N) —= Extp(L, N) — Ext%(M/L, N)

for any Gorenstein flat R-module N. Moreover, Ext},(M, N) = 0since M is G F-projective and Ext% (M/L, N) =
0 since idg(N) < 1 by the hypothesis. Thus Extk(L, N) = 0, and hence L is GF-projective, as desired.

(3)=(4) It is trivial.

(4)=(1) For any left R-module M, consider an exact sequence 0 — K — P — M — 0 with P

projective, we have the following exact sequence
Exth(K, N) — Ext% (M, N) — Ext% (P, N)

for any Gorenstein flat R-module N. Moreover, Ext}%(K ,N) = 0since K is GF-projective as a submodule
of P by (4) and Ext%(P,N) = 0. Thus Ext%(M,N) = 0, and hence .GF-pdr(M) < 1. Therefore
I.GFdim(R) < 1.

(5)=(6) It follows from the fact that every projective module is strongly G F-projective.
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(6)=(5) Let M be a strongly GF-projective R-module and K a submodule of M. For the R-module
M/K, we have an exact sequence 0 — K'— P — M /K — 0 with P projective. Consider the

following pull-back diagram:

0 0
4 1
K = K
4 2
0 — K — N — P — 0
I ! !
0 — K — M — M/K — 0
4 1
0 0

By (6), K’ is strongly GF-projective as a submodule of P. Thus N is strongly GF-projective. Now
for the exact sequence 0 — K — N — P — 0 and any Gorenstein flat R-module G, we have the

following exact sequence
0 = Exth(N, G) — Exth(K,G) — Extd ' (P,G) =0,

and hence Ext% (K, G) = 0 for all i > 1. Therefore, K is strongly GF-projective, as desired.
(1)=(6) Let P be a projective R-module and K a submodule of P. For any Gorenstein flat R-module

G, the exact sequence 0 — K — P — P/K — 0 induces the following exact sequence
Extlz(P,G) — Extlz (K, G) — Ext' ' (P/K,G)
for all i > 1. Here, Exty(P,G) = 0 since P is projective and Exti'(P/K,G) = 0 by (1). Therefore,

Ext%(K,G) = 0 and hence K is strongly GF-projective.
(6)=(4) It is trivial. d

It is well known that the left global dimension l.gldim(R) < 1 of a left hereditary ring R. Now we give

another characterization of hereditary rings as follows:

Corollary 3.9. A ring R is left hereditary if and only if .GFdim(R) < 1 and every GF-projective

R-module is projective.

Proof. If R is left hereditary, then every submodule of projective modules is projective. By Corollary
3.8, .GFdim(R) < 1. So it suffices to show that every GF-projective R-module is projective. For any
R-module N, consider an exact sequence 0 — K — P — N — 0 with P projective, we have the

following exact sequence
Exth (M, P) — Extk (M, N) — Ext% (M, K)

for any G F-projective R-module M. Since R is left hereditary, Ext%(M , ) = 0 and clearly Ext}q(M ,P) =
0. Thus Extg (M, N) = 0, and hence M is projective, as desired.

Conversely, for any R-module M, consider an exact sequence
0—K-—P—>M-—0

with P projective. By Corollary 3.8, K is GF-projective, and so K is projective by the hypothesis. Thus
pdr(M) <1 and hence R is hereditary. O
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Theorem 3.10. Let R be a commutative noetherian ring and n a non-negative integer. Then the following
are equivalent:

(1) GFdim(R) < n;

(2) For any Gorenstein flat R-module N and any flat R-module F', idr(N Qg F) < n.

Proof. (1)=(2) For any Gorenstein flat R-module N, since GFdim(R) < n, then idg(N) < n. So we

have an exact sequence

0—~N-—->Fl—>... "1 s -
with each E! injective. Then for any flat R-module F, we have the following exact sequence
0—N@rF—-FE'QpF—. .. .—E" 1@ F—->E"Qr F —0.

Note that each E? @ F is injective by [7, Theorem 1.3], which induces that idr(N ® F) < n.

(2)=(1) For any Gorenstein flat R-module N, we consider the following exact sequence
0—N-—-FE'—... s>FEvl_s " 5
with each E? injective. Then for any flat R-module F, we have the following exact sequence
0->N@RrF —>F'@rF > —>F"1@pF—>L["QpF 0.

Similarly, each E*®gF is injective by [7, Theorem 1.3]. But idg(N®F) < n, so L"®gF is injective. Thus
L™ is injective by [7, Theorem 1.3] again, which induces that idr(N) < n. Therefore GFdim(R) <n. O

Corollary 3.11. Let R be a commutative noetherian ring. Then R is a GFI ring if and only if N @g F
is injective for any Gorenstein flat R-module N and any flat R-module F'.

We conclude this paper with the following results. Let

I.LFID(R) = sup{idg(M) | M is any flat R-module}.

Proposition 3.12. Let R be a ring. Then

I.FID(R) < l.GFdim(R) < l.gldim(R).

Proof. By Proposition 3.5, . GFdim(R) < l.gldim(R). So it suffices to prove [.FID(R) < I.GFdim(R).
Assume that [.GFdim(R) = n < co. Let F be a flat R-module with idr(F) = m < co. We claim
that m < n. Otherwise, let m > n. Let N be any R-module, then there exists an exact sequence

0— K — P— N — 0 with P projective, which induces the following exact sequence
Ext (P, F) — Ext7 (K, F) — Ext}; "' (N, F) .

Note that Ext}(P,F) = 0 since P is projective and Ext};"'(N,F) = 0 since idg(F) = m. So
Ext (K, F) = 0, which induces idg(F) < m. This is a contradiction. So m < n and hence I.FFID(R) <
I.GFdim(R). O
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