Generalized Hyers-Ulam type stability of the additive functional equation inequalities with 2^n-variables on an approximate group and ring homomorphism

LY VAN AN
Faculty of Mathematics Teacher Education, Tay Ninh University, Ninh Trung, Ninh Son, Tay Ninh Province, Vietnam

Received: 16 Jul 2020 • Accepted: 01 Aug 2020 • Published Online: 20 Aug 2020

Abstract:
In this paper we study to solve additive functional inequality with 2^n-variables and their Hyers-Ulam type stability. First are investigated results with a direction method of group homomorphism and last are investigated in ring homomorphism. Then I will show that the solutions of inequality are additive mapping. These are the main results of this paper.

Key words: stability, functional equation Banach space; generalized Hyers-Ulam stability. Jordan-homomorphism, Lie-homomorphism, equation functional inequality
Mathematics Subject Classification: 39B52, 46S10, 47S10, 12J25

1. Introduction
The study of the functional equation stability originated from a question of S.M. Ulam [23], concerning the stability of group homomorphisms. Let (G, \ast) be a group and let (G', \circ, d) be a metric group with metric $d(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$ such that if $f : G \to G'$ satisfies

$$d\left(f(x \ast y), f(x) \circ f(y)\right) < \delta$$

for all $x, y \in G$ then there is a homomorphism $h : G \to G'$ with

$$d\left(f(x), h(x)\right) < \epsilon$$

for all $x \in G$, if the answer, is affirmative, we would say that equation of homomorphism $h(x \ast y) = h(y) \circ h(y)$ is stable. The concept of stability for a functional equation arises when we replace functional equation by an inequality which acts as a perturbation of the equation. Thus the stability question of functional equations is that how do the solutions of the inequality differ from those of the given function equation? Hyers[13] gave a first affirmative answer to the question of Ulam as follows:

©Asia Mathematika
*Correspondence: lyvanan145@gmail.com
Theorem 1.1. (D. H. Hyers) Let \(\epsilon \geq 0 \) and let \(f \) be a function defined on an Abelian group \((\mathbb{G}, +) \) with values in Banach spaces \((\mathbb{Y}, +) \) satisfying
\[
\|f(x + y) - f(x) - f(y)\| \leq \epsilon,
\]
for all \(x, y \in \mathbb{G} \) and some \(\epsilon \geq 0 \). Then there exists a unique additive mapping \(T : \mathbb{G} \to \mathbb{Y} \), such that
\[
\|f(x) - T(x)\| \leq \epsilon, \forall x \in \mathbb{G}.
\]

Next Th. M. Rassias [20] provided a generalization of Hyers’ Theorem which allows the Cauchy difference to be unbounded:

Theorem 1.2. (Th. M. Rassias.) Consider \(\mathbb{E}, \mathbb{E}' \) to be two Banach spaces, and let \(f : \mathbb{E} \to \mathbb{E}' \) be a mapping such that \(f(tx) \) is continous in \(t \) for each fixed \(x \). Assume that there exist \(\theta > 0 \) and \(p \in [0, 1] \) such that
\[
\|f(x + y) - f(x) - f(y)\| \leq \epsilon(\|x\|^p + \|y\|^p), \forall x, y \in \mathbb{E}.
\]
then there exists a unique linear \(L : \mathbb{E} \to \mathbb{E}' \) satifies
\[
\|f(x) - L(x)\| \leq \frac{2\theta}{2 - 2^p}\|x\|^p, x \in \mathbb{E}.
\]

Next Badora in [6] provided the following result concerning the stability of a ring homomorphism:

Theorem 1.3. Let \(\mathbb{R} \) be a ring and \(\mathbb{Y} \) be Banach algebra and \(\epsilon, \delta \geq 0 \). Assume that \(f : \mathbb{R} \to \mathbb{Y} \) satisfies
\[
\|f(x + y) - f(x) - f(y)\| \leq \epsilon
\]
and
\[
\|f(x \cdot y) - f(x)f(y)\| \leq \delta,
\]
\(\forall x, y \in \mathbb{R} \). Then there exists a unique ring homomorphism \(T : \mathbb{R} \to \mathbb{Y} \) such that
\[
\|f(x) - T(x)\| \leq \epsilon, \forall x \in \mathbb{R}.
\]

The stability problems for several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem. Such as in 1978, Rassias in [20] prove a generalization of Hyers’ theorem the Cauchy difference to be unbounded and R. Badora in [6] prove generalization the result on a ring homomorphisms next in [24] proved the generalized Hyers’ theorem and...
Badora’ theorem. Recently, in [6, 13, 20, 24] the authors studied the Hyers-Ulam stability for the following functional inequalities

\[\left\| f\left(\sum_{k=1}^{r} x_k \right) - \sum_{k=1}^{r} f(x_k) \right\|_Y \leq \epsilon, \forall \epsilon \geq 0. \]

and

\[\left\| f\left(\prod_{j=1}^{r} x_j \right) - \prod_{j=1}^{r} f(x_j) \right\|_Y \leq \delta, \forall \delta \geq 0 \]

in group and ring homomorphisms. So that we solve and proved the Hyers-Ulam type stability for functional inequalities

\[\left\| f\left(\sum_{j=1}^{n} x_j + \frac{1}{n} \sum_{j=1}^{n} x_{n+j} \right) - \sum_{j=1}^{n} f(x_j) - \sum_{j=1}^{n} f\left(\frac{x_{n+j}}{n} \right) \right\|_Y \leq \epsilon, \forall \epsilon \geq 0 \] (1)

and

\[\left\| f\left(\prod_{j=1}^{n} x_j + \frac{1}{n} \prod_{j=1}^{n} x_{n+j} \right) - \prod_{j=1}^{n} f(x_j) - \prod_{j=1}^{n} f\left(\frac{x_{n+j}}{n} \right) \right\|_Y \leq \delta, \forall \delta \geq 0 \] (2)

ie the functional inequalities with 2n-variables. Under suitable assumptions on spaces \(X \) and \(Y \), we will prove that the mappings satisfying the functional inequalities (1) and (2). Thus, the results in this paper are generalization of those in [6, 13, 20, 24] for functional inequalities with 2n-variables.

The paper is organized as followns: In section preliminaries we remind some basic notations in [3, 4, 14] such as solutions of the inequalities.

Section 3 is devoted to prove the Hyers-Ulam type stability of the additive functional inequalities (1) when \(X \) be an Abelian group and \(Y \) be a Banach space.

Section 4 is devoted to prove the Hyers-Ulam type stability of the additive functional inequality (1) and (2) when \(X \) be a ring and \(Y \) be a Banach algebra, \(X \) be an Abelian group and \(Y \) be a Banach space.

2. preliminaries

Definition 2.1. Let \(\{x_n\} \) be a sequence in a normed space \(X \).

1. A sequence \(\{x_n\}_{n=1}^{\infty} \) in a space \(X \) is a Cauchy sequence iff the sequence \(\{x_{n+1} - x_n\}_{n=1}^{\infty} \) converges to zero;

2. The sequence \(\{x_n\}_{n=1}^{\infty} \) is said to be convergent if, there exists \(x \in X \) such that, for any \(\epsilon > 0 \), there is a positive integer \(N \) such that
\[\|x_n - x\| \leq \epsilon, \forall n \geq N. \]

Then the point \(x \in X \) is called the limit of sequence \(x_n \) and denoted by \(\lim_{n \to \infty} x_n = x \);

3. If every sequence Cauchy in \(X \) converges, then the normed space \(X \) is called a Banach space.

2.2. Solutions of the inequalities.

The functional equation

\[f(x + y) = f(x) + f(y) \]

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an **additive mapping**.

3. Stability of Approximate Group Homomorphisms

Now, we first study the solutions of (1). Note that for this inequality, \(X \) be an Abelian group and \(Y \) is a Banach space. Under this setting, we can show that the mapping satisfying (1) is additive. These results are given in the following.

Theorem 3.1. Let \(X \) be an Abelian group and \(Y \) be Banach space. If \(\epsilon \geq 0, n \in \mathbb{N}, n \geq 2 \) and \(f : X \to Y \) such that

\[\left\| f\left(\sum_{j=1}^{n} x_j + \frac{1}{n} \sum_{j=1}^{n} x_{n+j}\right) - \sum_{j=1}^{n} f(x_j) - \sum_{j=1}^{n} f\left(x_{n+j} / n\right)\right\|_Y \leq \epsilon \tag{3} \]

for all \(x_1, x_2, \ldots, x_{2n} \in X \), then there exists a unique additive mapping \(H : X \to Y \) such that

\[\left\| f(x) - H(x)\right\|_Y \leq \frac{1}{2n-1} \epsilon, \forall x \in X. \tag{4} \]

Proof. We will show that

\[\left\| \frac{f((2n)^k x)}{(2n)^k} - f(x)\right\|_Y \leq \frac{1}{2n} \epsilon, \sum_{m=1}^{k} (2n)^{-m}, \forall x \in X. \tag{5} \]

for any positive integer \(k \) and for all \(x \in X \). The proof of (5) follows by induction on \(k \). With \(k = 1 \) and letting \(x_j = x, x_{n+j} = nx \) for all \(j = 1, 2, \ldots, n \) by the hypothesis (3), we have

\[\left\| f(2nx) / 2n - f(x)\right\|_Y = \frac{1}{2n} \left\| f(2nx) - 2nf(x)\right\|_Y \leq \frac{1}{2n} \epsilon, \forall x \in X. \]

Assume now that (5) holds for \(k \) and we want to prove it for the case \(k + 1 \). Replacing \(x \) by \(2nx \) in (5) we obtain

\[\left\| \frac{f((2n)^k \cdot 2nx)}{(2n)^k} - f(2nx)\right\|_Y \leq \epsilon, \sum_{m=1}^{k} (2n)^{-m}, \forall x \in X. \]
therefore
\[\left\| \frac{f(2n^{k+1}x)}{(2n)^{k+1}} - \frac{1}{2n} f(2nx) \right\|_Y \leq \epsilon \sum_{m=2}^{k+1} (2n)^{-m}, \forall x \in \mathbb{X}. \]

Now, using the triangle inequality we deduce
\[
\left\| \frac{f(2n^{k+1}x)}{(2n)^{k+1}} - f(x) \right\|_Y \leq \left\| \frac{f(2n^{k+1}x)}{(2n)^{k+1}} - \frac{1}{2n} f(2nx) \right\|_Y + \left\| \frac{1}{2n} f(2nx) - f(x) \right\|_Y \\
\leq \frac{\epsilon}{2n} + \epsilon \sum_{m=2}^{k+1} (2n)^{-m} \\
\leq \epsilon \sum_{m=1}^{k+1} (2n)^{-m}.
\]

Thus, (5) is valid for all \(k \in \mathbb{N} \). Since \(\sum_{m=1}^{k} (2n)^{-m} \) is increasingly convergent to \(\frac{1}{2n-1} \), we get from (5) that
\[
\left\| \frac{f(2n^{k+1}x)}{(2n)^{k+1}} - f(x) \right\|_Y \leq \frac{1}{2n-1} \epsilon, \forall x \in \mathbb{X}.
\]

(6)

Fixing an \(x \in \mathbb{X} \), for all \(h,k \in \mathbb{N} \) with \(h > k \), we have, from (6) that
\[
\left\| \frac{f(2n^{h}x)}{(2n)^{h}} - \frac{1}{(2n)^k} f(2n^k x) \right\|_Y = \frac{1}{(2n)^h} \left\| \frac{1}{(2n)^{h-k}} f(2n^h x) - f(2n^k x) \right\|_Y \\
\leq \frac{1}{(2n)^h} \cdot \frac{1}{2n-1} \epsilon.
\]

Therefore
\[
\lim_{h,k \to \infty} \left\| \frac{f(2n^{h}x)}{(2n)^{h}} - \frac{1}{(2n)^k} f(2n^k x) \right\|_Y = 0.
\]

Since \(Y \) is Banach space, the sequence \(\left\{ \frac{f(2n^{k}x)}{(2n)^k} \right\} \) converges. Set
\[
H(x) = \lim_{k \to \infty} \frac{f(2n^{k}x)}{(2n)^k}, \forall x \in \mathbb{X}.
\]

(7)

Then we obtain a mapping \(H : \mathbb{X} \to \mathbb{Y} \). From (10), for all \(x_1, x_2, \ldots, x_{2n} \in \mathbb{X} \) and for all \(k \in \mathbb{N} \), We compute that
\[\left\| f \left((2n)^k \left(\sum_{j=1}^{n} x_j + \frac{1}{n} \sum_{j=1}^{n} x_{n+j} \right) \right) - \sum_{j=1}^{n} f \left((2n)^k x_j \right) - \sum_{j=1}^{n} f \left((2n)^k \frac{x_{n+j}}{n} \right) \right\|_Y \leq \epsilon, \]

and so
\[\frac{1}{(2n)^k} \left\| f \left((2n)^k \left(\sum_{j=1}^{n} x_j + \frac{1}{n} \sum_{j=1}^{n} x_{n+j} \right) \right) - \sum_{j=1}^{n} f \left((2n)^k x_j \right) - \sum_{j=1}^{n} f \left((2n)^k \frac{x_{n+j}}{n} \right) \right\|_Y \leq \frac{1}{(2n)^k} \epsilon. \]

We will prove that \(H \) is additive. Consequently,
\[
\left\| H \left(\sum_{j=1}^{n} x_j + \frac{1}{n} \sum_{j=1}^{n} x_{n+j} \right) - \sum_{j=1}^{n} H \left(x_j \right) - \sum_{j=1}^{n} H \left(\frac{x_{n+j}}{n} \right) \right\|_Y \\
= \lim_{k \to \infty} \left\| \frac{1}{(2n)^k} f \left((2n)^k \left(\sum_{j=1}^{n} x_j + \frac{1}{n} \sum_{j=1}^{n} x_{n+j} \right) \right) \right. \\
- \sum_{j=1}^{n} \frac{1}{(2n)^k} f \left((2n)^k x_j \right) - \sum_{j=1}^{n} \frac{1}{(2n)^k} f \left((2n)^k \frac{x_{n+j}}{n} \right) \left\|_Y \right. \\
\leq \lim_{k \to \infty} \left\| \frac{1}{(2n)^k} \epsilon \right\| = 0.
\]

It follows from (7) that
\[\left\| H \left(\sum_{j=1}^{n} x_j + \frac{1}{n} \sum_{j=1}^{n} x_{n+j} \right) - \sum_{j=1}^{n} H \left(x_j \right) - \sum_{j=1}^{n} H \left(\frac{x_{n+j}}{n} \right) \right\|_Y = 0. \]

Hence
\[H \left(\sum_{j=1}^{n} x_j + \frac{1}{n} \sum_{j=1}^{n} x_{n+j} \right) = \sum_{j=1}^{n} H \left(x_j \right) + \sum_{j=1}^{n} H \left(\frac{x_{n+j}}{n} \right), \]

for all \(x_1, x_2, ..., x_{2n} \in X \).

Clearly, \(H \left(0 \right) = 0 \) and so \(H \) is an additive mapping. From (6) and (7) we see that (4) is valid. Now we prove the uniqueness of \(H \). Assume that \(H_1 : X \to Y \) is an additive mapping such that
\[\left\| f \left(x \right) - H_1 \left(x \right) \right\| \leq \frac{1}{2n-1} \epsilon, \forall x \in X. \]

Since both \(H \) and \(H_1 \) are additive, we deduce that, for each \(\forall x \in X \) and for all \(n \in \mathbb{N} \),
\[2n \| H(x) - H_1(x) \|_Y = \| H(2nx) + H_1(2nx) \|_Y \]
\[\leq \| H(2nx) - f(2nx) \|_Y + \| f(2nx) + H_1(2nx) \|_Y \]
\[\leq \frac{2\epsilon}{2n-1}, \]
so that
\[\| H(x) - H_1(x) \|_Y \leq \frac{2\epsilon}{n(2n-1)} \]
for all \(x \in \mathbb{X} \) and hence \(H(x) = H_1(x) \) for all \(x \in \mathbb{X} \). This completes the proof. \(\square \)

Corollary 3.1. Let \(\mathbb{X} \) be an Abelian group and \(\mathbb{Y} \) be Banach space. If \(\epsilon \geq 0 \), \(n \in \mathbb{N} \), \(n \geq 2 \), \(f(0) = 0 \) and \(f : \mathbb{X} \rightarrow \mathbb{Y} \) such that
\[\| f \left(\sum_{j=1}^{n} x_j + \frac{1}{n} \sum_{j=1}^{n} x_{n+j} \right) - \sum_{j=1}^{n} f(x_j) - \sum_{j=1}^{n} f \left(\frac{x_{n+j}}{n} \right) \|_Y \leq \epsilon, \] (8)
for all \(x_1, x_2, \ldots, x_{2n} \in \mathbb{X} \), then there exists a unique additive group homomorphism \(H : \mathbb{X} \rightarrow \mathbb{Y} \) such that
\[\| f(x) - H(x) \|_Y \leq \frac{1}{2n-1} \epsilon, \forall x \in \mathbb{X}. \] (9)

4. Stability of a Ring Homomorphism

Now, we first study the solutions of (2). Note that for this inequality, \(\mathbb{X} \) be a ring and \(\mathbb{Y} \) is a Banach algebra and \(\mathbb{X} \) be an Abelian group and \(\mathbb{Y} \) is a Banach spaces. Under this setting, we can show that the mapping satisfying (2) is additive. These results are give in the following.

Theorem 4.1. Let \(\mathbb{R} \) be a ring and \(\mathbb{Y} \) be Banach algebra and \(\epsilon, \delta \geq 0 \) and \(n \in \mathbb{N}, \ n \geq 2 \). If a mapping \(f : \mathbb{R} \rightarrow \mathbb{Y} \) satisfies
\[\| f \left(\sum_{j=1}^{n} x_j + \frac{1}{n} \sum_{j=1}^{n} x_{n+j} \right) - \sum_{j=1}^{n} f(x_j) - \sum_{j=1}^{n} f \left(\frac{x_{n+j}}{n} \right) \|_Y \leq \epsilon \] (10)
and
\[\| f \left(\prod_{j=1}^{n} x_j + \frac{1}{n} \prod_{j=1}^{n} x_{n+j} \right) - \prod_{j=1}^{n} f(x_j) - \prod_{j=1}^{n} f \left(\frac{x_{n+j}}{n} \right) \|_Y \leq \delta \] (11)
for all \(x_1, x_2, \ldots, x_{2n} \in \mathbb{R} \), then there exists a unique additive mapping \(H : \mathbb{R} \rightarrow \mathbb{Y} \) such that
\[H \left(\prod_{j=1}^{n} x_j + \frac{1}{n} \prod_{j=1}^{n} x_{n+j} \right) = \prod_{j=1}^{n} H(x_j) + \prod_{j=1}^{n} H \left(\frac{x_{n+j}}{n} \right) \] (12)
for all \(x_1, x_2, \ldots, x_{2n} \in \mathbb{R}\) and

\[
\left\| f(x) - H(x) \right\|_\nu \leq \frac{1}{2n-1} \epsilon, \forall x \in \mathbb{R}.
\] (13)

Proof. Theorem 3.1 show that there exists a unique additive mapping \(H: \mathbb{R} \to \mathbb{Y}\) satisfies (13). By the proof of Theorem 3.1, we see that the mapping \(H\) is give by

\[
H(x) = \lim_{k \to \infty} \frac{1}{(2n)^k} f \left((2n)^k x \right), \forall x \in \mathbb{R}
\] (14)

for all \(x_1, x_2, \ldots, x_{2n} \in \mathbb{R}\), let

\[
h(x_1, x_2, \ldots, x_{2n}) = f \left(n \prod_{j=1}^{n} x_j + \frac{1}{n} \prod_{j=1}^{n} x_{n+j} \right) - \prod_{j=1}^{n} f(x_j) - \prod_{j=1}^{n} f \left(\frac{x_{n+j}}{n} \right).
\]

The using inequality (10), we get

\[
\lim_{k \to \infty} \frac{1}{(2n)^k} h \left((2n)^k x_1, x_2, \ldots, x_{2n} \right) = 0.
\]

Therefore

\[
H \left(\prod_{j=1}^{n} x_j + \frac{1}{n} \prod_{j=1}^{n} x_{n+j} \right) = H \left(x_1 x_2 \cdots x_n + \frac{1}{n} x_{n+1} x_{n+2} \cdots x_{2n} \right)
\]

\[
= \lim_{k \to \infty} \frac{1}{(2n)^k} f \left((2n)^k \left(x_1 x_2 \cdots x_n + \frac{1}{n} x_{n+1} x_{n+2} \cdots x_{2n} \right) \right)
\]

\[
= \lim_{k \to \infty} \frac{1}{(2n)^k} h \left(\left((2n)^k x_1 \right) x_2 \cdots x_n + \frac{1}{n} \left((2n)^k x_{n+1} \right) x_{n+2} \cdots x_{2n} \right)
\]

\[
= \lim_{k \to \infty} \frac{1}{(2n)^k} \left[h \left((2n)^k x_1, x_2, \ldots, x_{2n} \right) + f \left((2n)^k x_1 \right) f(x_2) \cdots f(x_n)
ight.
\]

\[
+ f \left(\frac{(2n)^k}{n} x_{n+1} \right) f \left(\frac{x_{n+2}}{n} \right) \cdots f \left(\frac{x_{2n}}{n} \right) \left]
\]

\[
= \prod_{j=1}^{n} H(x_j) + \prod_{j=1}^{n} H \left(\frac{x_{n+j}}{n} \right).
\]

\(\forall x_1, x_2, \ldots, x_{2n} \in \mathbb{R}\).

From the last equation and the additivity of \(H\) we see that, for all \(k \in \mathbb{N}\)
\[H(x_1) f((2n)^k x_2) \cdots f(x_n) + H\left(\frac{x_{n+1}}{n}\right) f\left(\frac{(2n)^k \cdot x_{n+2}}{n}\right) \cdots f\left(\frac{x_{2n}}{n}\right) \]

\[= H\left(x_1 \cdot (2n)^k x_2 \cdots x_n + \frac{1}{n} x_{n+1} \cdot (2n)^k x_{n+2} \cdots x_{2n}\right) \]

\[= H\left((2n)^k \cdot x_1 \cdot x_2 \cdots x_n + \frac{1}{n} (2k)^k x_{n+1} \cdot x_{n+2} \cdots x_{2n}\right) \]

\[= (2n)^k H\left(x_1\right) f\left(x_2\right) \cdots f\left(x_n\right) \]

\[+ (2n)^k H\left(\frac{x_{n+1}}{n}\right) f\left(\frac{x_{n+2}}{n}\right) \cdots f\left(\frac{x_{2n}}{n}\right) \]

and so

\[H\left(x_1\right) f\left((2n)^k x_2\right) \cdots f\left(x_n\right) + H\left(\frac{x_{n+1}}{n}\right) f\left(\frac{(2n)^k \cdot x_{n+2}}{n}\right) \cdots f\left(\frac{x_{2n}}{n}\right) \]

\[= H\left(x_1\right) f\left(x_2\right) \cdots f\left(x_n\right) + H\left(\frac{x_{n+1}}{n}\right) f\left(\frac{x_{n+2}}{n}\right) \cdots f\left(\frac{x_{2n}}{n}\right) . \]

Sending \(k \) to infinity, we see that

\[H\left(x_1\right) H\left(x_2\right) H\left(x_3\right) \cdots f\left(x_n\right) + H\left(\frac{x_{n+1}}{n}\right) H\left(\frac{x_{n+2}}{n}\right) H\left(\frac{x_{n+3}}{n}\right) \cdots f\left(\frac{x_{2n}}{n}\right) \]

\[= H\left(x_1 x_2 \cdots x_n + \frac{1}{n} x_{n+1} x_{n+2} \cdots x_{2n}\right) , \quad (15) \]

\(\forall x_1, x_2, \ldots, x_{2n} \in \mathbb{R} \).

Suppose that

\[H\left(x_1\right) H\left(x_2\right) H\left(x_3\right) \cdots H\left(x_{n-1}\right) f\left(x_n\right) + H\left(\frac{x_{n+1}}{n}\right) H\left(\frac{x_{n+2}}{n}\right) H\left(\frac{x_{n+3}}{n}\right) \]

\[\cdots H\left(\frac{x_{2n-1}}{n}\right) f\left(\frac{x_{2n}}{n}\right) \]

\[= H\left(x_1 x_2 \cdots x_n + \frac{1}{n} x_{n+1} x_{n+2} \cdots x_{2n}\right) , \quad (16) \]
∀x₁, x₂, ..., x₂n ∈ ℜ. Then, from (16), we get that, for all k ∈ N.

\[
\frac{1}{(2n)^k} H(x_1) H(x_2) H(x_3) \cdots H(x_{n-1}) f((2n)^k x_n)
\]

\[\] + \frac{1}{(2n)^k} H\left(\frac{x_{n+1}}{n}\right) H\left(\frac{x_{n+2}}{n}\right) \cdots H\left(\frac{x_{2n-1}}{n}\right) f\left((2n)^k \cdot \frac{x_{2n}}{n}\right)

\[=\]

\frac{1}{(2n)^k} H\left((2n)^k \left(x_1 x_2 \cdots x_n + \frac{1}{n} x_{n+1} x_{n+2} \cdots x_{2n}\right)\right)

\[=\]

\frac{1}{(2n)^k} H\left(x_1 x_2 \cdots x_n + \frac{1}{n} x_{n+1} x_{n+2} \cdots x_{2n}\right)

(17)

By letting k → ∞ we see that

\[
H\left(x_1 x_2 \cdots x_n + \frac{1}{n} x_{n+1} x_{n+2} \cdots x_{2n}\right)
\]

(18)

∀x₁, x₂, ..., x₂n ∈ ℜ which is the desired identity (12)

Theorem 4.2. Let X be an Abelian group and Y be Banach space. If ϵ ≥ 0, ∀k ∈ N, and ϕ : X × X × X → X such that

\[
2^k \varphi(x, y, z) = \varphi(2^k x, y, z) = \varphi(x, 2^k y, z) = \varphi(x, y, 2^k z)
\]

∀k ∈ N, x, y, z ∈ X

and ψ : Y × Y × Y → Y be a continuous mapping such that

\[
2^k \psi(x, y, z) = \psi(2^k x, y, z) = \psi(x, 2^k y, z) = \psi(x, y, 2^k z)
\]

∀k ∈ N, x, y, z ∈ Y and ϵ, δ ≥ 0.

If f : X → Y satisfies

\[
\left\| f\left(\frac{x + y}{2} + z\right) - f\left(\frac{x + y}{2}\right) - f(z) \right\|_Y \leq \epsilon
\]

(19)

for all x, y, z ∈ X and

\[
\left\| f\left(\varphi(x, y, z)\right) - \psi\left(f(x), f(y), f(z)\right)\right\|_Y \leq \delta
\]

(20)

for all x, y, z ∈ X

Then there exists a unique additive mapping H : X → Y such that

\[
H\left(\varphi(x, y, z)\right) = \psi\left(H(x), H(y), H(z)\right)
\]

(21)
for all \(x, y, z \in X \)

\[
\|f(x) - H(x)\|_Y \leq \frac{1}{2} \epsilon, \forall x \in X.
\]

(22)

Proof. We will show that

\[
\left\| \frac{f(2^k x)}{2^k} - f(x) \right\|_Y \leq \epsilon \sum_{m=1}^{k} 2^{-m}, \forall x \in X.
\]

(23)

for any positive integer \(k \) and for all \(x \in X \). The proof of (23) follows by induction on \(k \). With \(k = 1 \) and letting \(x = y = z \) by the hypothesis (19), we have

\[
\left\| \frac{f(2x)}{2} - f(x) \right\|_Y = \frac{1}{2} \left\| f(2x) - 2f(x) \right\|_Y \leq \frac{1}{2} \epsilon, \forall x \in X.
\]

Assume now that (23) holds for \(k \) and we want to prove it for the case \(k + 1 \). Replacing \(x \) by \(2x \) in (23) we obtain

\[
\left\| \frac{f(2^{k+1} x)}{2^{k+1}} - \frac{1}{2} f(2x) \right\|_Y \leq \epsilon \sum_{m=2}^{k+1} 2^{-m}, \forall x \in X.
\]

Now, using the triangle inequality we deduce

\[
\left\| \frac{f(2^{k+1} x)}{2^{k+1}} - f(x) \right\|_Y \leq \left\| \frac{f(2^{k+1} x)}{2^{k+1}} - \frac{1}{2} f(2x) \right\|_Y + \left\| \frac{1}{2} f(2x) - f(x) \right\|_Y
\]

\[
\leq \frac{\epsilon}{2} + \epsilon \sum_{m=1}^{k+1} 2^{-m}
\]

\[
\leq \epsilon \sum_{m=1}^{k+1} 2^{-m}.
\]

Thus, (23) is valid for all \(k \in \mathbb{N} \). Since \(\sum_{m=1}^{k+1} 2^{-m} \) is increasingly convergent to \(\frac{1}{2} \), we get from (23) that

\[
\left\| \frac{f(2^{k+1} x)}{2^{k+1}} - f(x) \right\|_Y \leq \frac{1}{2} \epsilon, \forall x \in X.
\]

(24)

Fixing an \(x \in X \), for all \(h, k \in \mathbb{N} \) with \(h > k \), we have, from (24) that
\[\left\| \frac{f(2^h x)}{2^h} - \frac{1}{2^h} f(2^k x) \right\|_Y = \frac{1}{2^h} \left\| \frac{1}{2^{h-k}} f(2^h x) - f(2^k x) \right\|_Y \]
\[\leq \frac{1}{2^h} \frac{1}{2} \epsilon. \]

Therefore
\[\lim_{h,k \to \infty} \left\| \frac{f(2^h x)}{2^h} - \frac{1}{2^h} f(2^k x) \right\|_Y = 0. \]

Since \(Y \) is Banach space, the sequence \(\left\{ f\left(\frac{2^k x}{2^k} \right) \right\} \) converges. Set
\[H(x) = \lim_{k \to \infty} \frac{f(2^k x)}{2^k}, \forall x \in X. \quad (25) \]

Then we obtain a mapping \(H : X \to Y \). From (19), for all \(x, y, z \in X \) and for all \(k \in \mathbb{N} \), We compute that
\[\left\| f\left(2^k \left(\frac{x+y}{2} + z \right) \right) - f(2^k \frac{x+y}{2}) - f(2^k z) \right\|_Y \leq \epsilon, \]
and so
\[\frac{1}{2^k} \left\| f\left(2^k \left(\frac{x+y}{2} + z \right) \right) - f(2^k \frac{x+y}{2}) - f(2^k z) \right\|_Y \leq \frac{1}{2^k} \epsilon. \]

We will prove that \(H \) is additive. Consequently,
\[\left\| H\left(\frac{x+y}{2} + z \right) - H\left(\frac{x+y}{2} \right) - H(z) \right\|_Y \]
\[= \lim_{k \to \infty} \left\| \frac{1}{2^k} f\left(2^k \left(\frac{x+y}{2} + z \right) \right) - \frac{1}{2^k} f\left(2^k \frac{x+y}{2} \right) - \frac{1}{2^k} f(2^k z) \right\|_Y \]
\[\leq \lim_{k \to \infty} \left\| \frac{1}{2^k} \epsilon \right\| = 0. \]

It follows from (25) that
\[\left\| H\left(\frac{x+y}{2} + z \right) - H\left(\frac{x+y}{2} \right) - H(z) \right\|_Y = 0. \]

Hence
\[H\left(\frac{x+y}{2} + z \right) = H\left(\frac{x+y}{2} \right) + H(z) \]
for all $x, y, z \in X$.

Clearly, $H(0) = 0$ and so H is an additive mapping. From (24) and (25) we see that (22) is valid. Now we prove the uniqueness of H. Assume that $H_1 : X \to Y$ is an additive mapping such that

$$\|f(x) - H_1(x)\|_Y \leq \frac{1}{2} \epsilon, \forall x \in X.$$

Since both H and H_1 are additive, we deduce that, for each $\forall x \in X$ and for all $k \in \mathbb{N}$,

$$k \left\| H(x) - H_1(x) \right\|_Y = \left\| H(kx) + H_1(kx) \right\|_Y \leq \left\| H(kx) - f(kx) \right\|_Y + \left\| f(kx) + H_1(kx) \right\|_Y \leq \epsilon,$$

so that

$$\left\| H(x) - H_1(x) \right\|_Y \leq \frac{\epsilon}{k}$$

for all $x \in X$ and hence $H(x) = H_1(x)$ for all $x \in X$.

Next to show that the mapping H satisfies (20), we define

$$Q(x, y, z) = f\left(\varphi(x, y, z)\right) - \psi\left(f(x), f(y), f(z)\right), \forall x, y, z \in X.$$

Then from condition (20), we see that

$$\lim_{k \to \infty} \frac{1}{2^k} Q\left(2^k x, y, z\right) = 0, \forall x, y, z \in X.$$

Thus, by (25) we have for all $x, y, z \in X$

$$H\left(\varphi(x, y, z)\right) = \lim_{k \to \infty} \frac{1}{2^k} f\left(\varphi(2^k x, y, z)\right) = \lim_{k \to \infty} \frac{1}{2^k} \left(\psi\left(f\left(\frac{2^k x}{2^k}, f(y), f(z)\right) + Q\left(2^k x, y, z\right)\right)\right) = \psi\left(H(x), f(y), f(z)\right).$$

From the last equation and the additivity of H, we obtain that

$$H\left(\varphi(x, y, z)\right) = \frac{1}{2^k} H\left(\varphi(x, y, 2^k z)\right) = \psi\left(H(x), f(y), \frac{1}{2^k} f(2^k z)\right).$$

Letting $k \to \infty$ yields (21). This completes the proof. \(\square\)
From proving the theorems we have corollarys:

Corollary 4.1. Let \mathcal{R} be a ring with a unit 1 and \mathcal{Y} be Banach algebra with a unit e and $\epsilon, \delta \geq 0$ and $n \in \mathbb{N}, n \geq 2$. If a mapping $f : \mathcal{R} \rightarrow \mathcal{Y}$ satisfies

$$\left\| f \left(\sum_{j=1}^{n} x_{j} + \frac{1}{n} \sum_{j=1}^{n} x_{n+j} \right) - \sum_{j=1}^{n} f(x_{j}) - \frac{1}{n} \sum_{j=1}^{n} f \left(\frac{x_{n+j}}{n} \right) \right\|_Y \leq \epsilon \quad (26)$$

and

$$\left\| f \left(\prod_{j=1}^{n} x_{j} \prod_{j=1}^{n} x_{n+j} \right) - \prod_{j=1}^{n} f(x_{j}) - \frac{1}{n} \prod_{j=1}^{n} f \left(\frac{x_{n+j}}{n} \right) \right\|_Y \leq \delta \quad (27)$$

for all $x_1, x_2, \ldots, x_{2n} \in \mathcal{R}$ and $f(1) = e$, then there exists a unique ring homomorphism $H : \mathcal{R} \rightarrow \mathcal{Y}$ such that

$$\left\| f(x) - H(x) \right\|_Y \leq \frac{1}{2n-1} \epsilon, \forall x \in \mathcal{R}. \quad (28)$$

Corollary 4.2. Let \mathcal{X} be an algebra, \mathcal{Y} be Banach algebra and $\epsilon, \delta \geq 0$. If a mapping $f : \mathcal{X} \rightarrow \mathcal{Y}$ satisfies

$$\left\| f \left(\frac{x+y}{2} + z \right) - f \left(\frac{x+y}{2} \right) - f(z) \right\|_Y \leq \epsilon \quad (29)$$

and for all $x, y, z \in \mathcal{X}$,

$$\left\| f \left([x,y,z] \right) - \left[f(x), f(y), f(z) \right] \right\|_Y \left(\text{resp.} \left\| f \left(x \circ y \circ z \right) - f(x) \circ f(y) \circ f(z) \right\|_Y \right) \leq \delta, \quad (30)$$

then there exists a unique additive mapping $H : \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$H \left([x,y,z] \right) = \left[H(x), H(y), H(z) \right], \left(\text{resp.} f \left(x \circ y \circ z \right) = f(x) \circ f(y) \circ f(z) \right), \quad (31)$$

for all $x, y, z \in \mathcal{X}$ and

$$\left\| f(x) - H(x) \right\|_Y \leq \epsilon, \forall x \in \mathcal{X}. \quad (32)$$

References

