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Abstract: We recall the notion of R-analytic functions, these are definable in an o-minimal expansion

of the real field R and are locally the restriction of a holomorphic definable function. In this paper, we

prove that if the Weierstrass division theorem holds for the ring of smooth definable germs, then every

definable real analytic germ is R-analytic and that the converse does not hold. In the same section,

for the structure M = (R,+,−, ., 0, 1, <, xα1 , ..., xαp) where α1, ..., αp are an irrational numbers, we

show that the ring of R-analytic germs is equal to the ring of Nash germs. Finally, we show that

the germ of the exp function at zero is definable neither in the structure M nor in the structure

(R,+,−, ., 0, 1, <, xα1 , ..., xαp), where the real numbers α1, ..., αp are Q-linearly independent.

Key words: Weierstrass division theorem, polynomially bounded o-minimal structures, Nash germs.

1. Introduction

In this paper, we are going to study some properties of the o-minimal structure M :=

(R,+,−, ., 0, 1, <, xα1 , ..., xαp) where α1, ..., αp are a real irrational numbers. By [2] this struc-

ture is polynomially bounded and model complete so it is interesting as it is polynomially

bounded and generated by real analytic functions which are not globally subanalytic. Ricardo

Bianconi proved in [13] that if β ∈ R such that β is not in the field generated by α1, ..., αp ,

then no restriction of the function xβ to an interval is definable in the o-minimal structure M .

A little more generally, the interesting o-minimal structures that are expansions of an

arbitrary real closed fields R by adding new functions or relations have been important tools

in proving theorems in other areas as algebraic geometry for example thanks to the quantifier

elimination of the structure (R,+,−, ., <, 0, 1), the semialgebraic sets are closed under pro-

jection (see [4], Corollary 3.3.18). The reader should consult [10] for an account of o-minimal

c©Asia Mathematika
∗Correspondence: mourad.berraho@uit.ac.ma

117

https://orcid.org/0000-0003-2835-564X


Mourad Berraho

structures of a real closed field.

Given an open set U ⊂ Rn , a definable function f : U → R in an o-minimal expansion

of the real field is called an R-analytic function if for every a ∈ U , there is an holomorphic

definable function on an open neighbourhood of a such that its restriction to Rn coincides

with f around a . It is easy to check that every R-analytic function is a real analytic and

definable function, contrary to the complex case, not every real analytic and definable function

is R-analytic as it is shown in ([15], Example 2.1) for the structure (R,+,−, ., 0, 1, <, exp).

The Weierstrass division theorem is the key tool for local complex analytic geometry

(see for example Gunning and Rossi [14, Chapter II]). It is also used for example in the

proof of the important Oka’s coherence theorem (see [14, Chapter IV]). In this connexion, the

following question asked by Lou Van Den dries in [9]: Does the Weierstrass division theorem

hold for the ring of germs of real analytic definable functions in an o-minimal structure (not

necessarily polynomially bounded) extending the structure of the real numbers? in [15], there is

a positive answer in the semialgebraic setting and also in the structure of globally subanalytic

sets and functions but a negative answer in the structure (R,+,−, ., 0, 1, <, exp), so for the

structure M , we deduce a positive answer for its subring of R-analytic functions. But for an

o-minimal structure expanding the real field, in [16], it is shown a piecewise Weierstrass division

theorem for the definable holomorphic functions. Also in [1], it is shown in particular that the

Weierstrass division theorem does not hold for the ring of the smooth germs that are definable

in a polynomially bounded o-minimal structure that contains strictly the ring of real analytic
germs.

We firstly show that for the structure M , the ring of R-analytic germs is equal to the

ring of Nash germs.

Nondefinability results are a stronger forms of independence ones, so in the last section,

we are going to show in the light of [12] that the germ of the exp function at zero is not de-

finable in the structure M . Actually, we can prove that the germ of the exp function at zero

is not definable in the structure (R,+,−, ., 0, 1, <, xα1 , ..., xαp), where α1, ..., αp are Q-linearly

independent real numbers.

2. Preliminaries.

Throughout this paper, we will work over some fixed o-minimal expansions R of the structure

R := (R,+,−, ., 0, 1, <) in a first order language extending {+,−, ., 0, 1, <} . Definable means

definable with parameters from R . A function f : U → R , U ⊂ Rn is said to be definable if its

graph is definable. We say that the structure R is o-minimal if the definable subsets of R are

just finite unions of intervals of all kinds, including singletons. This structure is polynomially

bounded if for every definable function f : R → R there exists N ∈ N such that |f(t)| ≤ tN
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for all sufficiently large positive t .

Example 2.1

• The structure R := (R,+,−, ., 0, 1, <) is polynomially bounded and o-minimal (by Tarski-

Seidenberg); the sets definable in this structure are exactly the semialgebraic sets.

• The structure of the ordered real field with restricted analytic functions Ran whose defin-

able sets are the finitely subanalytic sets is a polynomially bounded o-minimal structure

by [2].

Denote by En the ring of smooth function germs at the origin of Rn, and by Cn a sequence

of its local subrings, we put x = (x1, ..., xn).

For every f ∈ En , we denote by f̂ ∈ R[[x1, ..., xn]] its infinite Taylor expansion at the

origin of Rn .

The mapping En 3 f 7→ f̂ ∈ R[[x1, ..., xn]] is called the Borel mapping.

We say that the local rings Cn are quasianalytic if the Borel mapping ∧ : Cn → R[[x]] is

injective for each n ∈ N . For example, by [3] the set of smooth function germs that are definable

in a polynomially bounded o-minimal structure is a system of quasianalytic local rings whose

maximal ideal are generated by the germ at zero of the coordinate functions x→ xi : Rn → R ,

for each n ∈ N .

In the sequel of this section, we will recall another interesting and famous example of a

quasianalytic local rings:

We use the following notation : for any multi-index J = (j1..., jn) of Nn , we denote the

length j1 + ...+ jn of J by the corresponding lower case letter j . We put DJ = ∂j/∂xj11 ...∂x
jn
n ,

J ! = j1!...jn! and xJ = xj11 ...x
jn
n , where x = (x1, ..., xn).

Let M = (Mj)j be an increasing sequence of positive real numbers, with M0 = 1. We

define the Denjoy-Carleman class En(M) to be the set of smooth germs f for which there exist

a neighborhood U of 0 and a positive constants C and σ such that

|DJf(x)| ≤ Cσjj!Mj for any J ∈ Nn and x ∈ U.

Here, Cσjj! appears as ”the analytic part” of the estimate, whereas Mj can be considered

as a way to allow a defect of analyticity, if On denotes the ring of the real analytic functions
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germs at the origin of Rn , we clearly have

On ⊂ En(M) ⊂ En.

Frow now on, we shall always make the following assumption:

the sequence M is logarithmically convex .

This amounts to saying that the sequence Mj+1/Mj increases.

This assumption implies that the class En(M) is a local ring with maximal ideal {h ∈
En(M) : h(0) = 0} .

• The local ring En(M) is quasianalytic if and only if

+∞∑
j=0

Mj

(j + 1)Mj+1

=∞.

• We have On = En(M) if and only if supj≥1(Mj)
1/j <∞.

• The ring En(M) is stable under derivation if and only if

sup
j≥1

(Mj+1/Mj)
1/j <∞.

The interested reader should see [18] for a thorough treatment of the rings En(M).

3. Weierstrass division theorem over the structure M

We begin this paper by this fundamental remark that gives an easier proof of a Bianconi’s

result (see[12]) thanks to the following theorem proved in [13].

Theorem 3.1. (see[13]). Let D ⊂ R2n be a definable open polydisc and u, v : D → R two

definable functions in (R, exp) (with parameters from R) such that f(x + iy) = (u + iv)(x, y)

is holomorphic in D . Then u and v are already definable in R.
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Remark 3.1. In particular if n = 1 and D = R2 , by [11, proposition 4.1] the functions u and

v are polynomials, so the theorem is trivial in this case.

Remark 3.2. We recall Bianconi’s Theorem proved in [12] that states that no restriction of

the sine function to an interval is definable in the structure (R, exp). Indeed, suppose that

for some a > 0, sin |[−a,a] is definable in (R, exp), we know that exp(x + iy) is holomorphic

and that its real part is u(x, y) := ex cos(y) and its imaginary part is v(x, y) := ex sin(y),

so the functions u and v are definable in the structure (R, exp) on the set ([−a, a])2 , so by

Theorem 2.1, we deduce that these functions u and v are also definable in the structure R, so

e2x(cos2(y) + sin2(y)) = e2x is also definable in R, but x→ ex is not a semialgebraic function,

which is a contradiction.

3.1. Weierstrass division theorem over an arbitrary polynomially bounded o-minimal
structure

Fix a polynomially bounded o-minimal structure R that is an expansion of the structure

R = (R, <, 0, 1,+,−, .) and denote by R∞n the ring of those smooth functions germs at 0 ∈ Rn

which are definable in R and by Rω
n the ring of real analytic functions germs at 0 that are

definable in R .

We will not distinguish notationally between a function and its germ.

We know by [3] that each ring R∞n is a quasianalytic local ring, so we may suppose that

R∞n ⊂ R[[x]] , (where x = (x1, ..., xn)).

Let (DRn )n∈N denote the system of the rings of R-analytic germs at 0 ∈ Rn (see the

definition above in the introduction).

We firstly show that if the system of the rings (R∞n )n∈N satisfies Weierstrass division

theorem, then Rω
n = DRn for all n ∈ N .

Proposition 3.1. Suppose that the system of the rings (R∞n )n∈N satisfies Weierstrass division

theorem, then the system of the rings (Rω
n)n∈N is equal to the system of the R-analytic germs

(DRn )n∈N .

Proof. Let f, g ∈ Rω
n such that g is regular of order p with respect to Xn , by the

Weierstrass division theorem in the ring R∞n , we deduce that there exist unique q̃ ∈ R∞n ,

121



Mourad Berraho

r̃1, ..., r̃p ∈ R∞n−1 such that

f̂ = ĝq̃ +

p∑
j=1

r̃j(X1, ..., Xn−1)X
p−j
n .

It is well known by ([5], Theorem 6.7) that the ring of real analytic germ satisfies

Weierstrass division theorem, so there exist unique q ∈ On and r1, ..., rp ∈ On−1 such that

f̂ = ĝq +

p∑
j=1

rj(X1, ..., Xn−1)X
p−j
n .

As Rω
n ⊂ R∞n and thanks to the unicity of the division in the ring R∞n , the functions

q and r1, ..., rp are also definable in the structure R , we deduce that the system of the rings

(Rω
n)n∈N also satisfies the Weierstrass division theorem. By ([15, Theorem 2.4]), we conclude

that Rω
n = DRn for all n ∈ N .

2

Remark 3.3. The reciprocal of Proposition 3.1 is not true.

Proof of Remark 3.3. Let En(M) denote a non-analytic and a quasianalytic Denjoy-

carleman ring (see the previous section). For each n ∈ N∗ , let f ∈ En(M), we define f̃ : Rn → R

by f̃(x) = f(x) if x ∈ [−1, 1]n and f̃(x) = 0 otherwise. We let REn(M) := (R, (f̃)f∈En(M)) be

the expansion of the real field by all restricted functions f̃ for f ∈ En(M), let’s consider the

polynomially bounded o-minimal structure R := {REn(M);n ∈ N} which is the expansion of the

real field by the restricted functions in En(M) (see [8]), so the ring of real analytic germs On
is contained in the ring of smooth germs that are definable in the structure REn(M) which we

denote by R∞n . As the ring of real analytic germs On is contained in the Denjoy-Carleman ring

En(M), we deduce that the ring of real analytic definable germs in the structure R (denoted

Rω
n ) is equal to the ring of real analytic germs, so the Weierstrass division theorem holds for

the system of the rings Rω
n . By ([15, Theorem 2.4]), the system Rω

n is exactly equal to the

system (DRn )n∈N .

As the system of the rings R∞n satisfies all the requirements of Definition 2.2 in [1], so if these

rings satisfy Weierstrass division theorem, then by ([5], Lemma 6.5), these rings also satisfy

Weierstrass preparation theorem, by the main result of [1], we deduce that these rings R∞n are

equal to the ring of real analytic germs On for all n ∈ N , which is a contradiction.

2
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Remark 3.4. Let’s take the structure R = (R, exp), so by Example 2.1 in [15], the system

(Rω
n)n∈N does not satisfy Weierstrass division theorem, so thanks to Proposition 3.1, we deduce

easily that the system (R∞n )n∈N does not satisfy Weierstrass division theorem.

3.2. The structure M

In the following we will confine ourselves just to the case when the structure R is equal to the

structure M := (R, xα1 , ..., xαp) where α1, ..., αp are arbitrary irrational numbers.

In this paper, we let M denote the o-minimal structure (R, xα1 , ..., xαp) where α1, ..., αp

is a finite sequence of irrational numbers and by xαi the function which is equal to the usual

xαi if x > 0 and equals to 0, if x ≤ 0 for all i = 1, ..., p .

We recall that a Nash germ is a real analytic algebraic function germ. See ([7]) for a

thorough treatment of semialgebraic functions and of Nash germs.

Let Nn denote the ring of Nash germs.

Theorem 3.2. DMn = Nn .

Proof. Let f ∈ DMn , so by definition the germ f has a definable holomorphic extension

F , let P and Q denote the real and the imaginary part of the function F , by ([15], Theorem

1.7) we deduce that P and Q are also R-analytic germs, so they are also in the ring DMn , so

thanks to [13, Corollary 1] these functions P and Q are a semialgebraic ones, so by viewing

F as a function in 2n reals variables, F is also a semialgebraic germ, as f is a real analytic

germ, we have that f(x) =
∑

k∈Nn akx
k , so f(x) = F (x, 0), therefore f is also a semialgebraic

germ, as f is analytic, it is also a Nash germ. So DMn ⊆ Nn .

Conversely, let f ∈ Nn , so f is definable in M (as f is definable in R), so by applying ([15],

Corollary 4.5), its holomorphic extension F is definable in R , so F is also definable in M and

as f is real analytic, we deduce that f ∈ DMn .

2

4. Nondefinability of the exp germ at zero in the structure M
The main aim of this section is to show by using techniques from [12] that the exp germ at

0 is not definable in the structure (R, xα1 , ..., xαp) for all Q-linearly independent real numbers
α1, ..., αp .
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Theorem 4.1. Let α1, ..., αp be an irrational real numbers, then the germ of the exponential

function at the origin of R is not definable in the structure M = (R, xα1 , ..., xαp).

Proof. It suffices to prove the theorem for p = 1, for this aim suppose that the exp

germ at 0 is definable in the structure (R, xα1), by [2, Section 3] the theory of the struc-

ture (R, xα1) is model complete. So this germ is definable by an existential formula of the

form ∃yF (x, ex, y) = 0, where the term F is a polynomial in x, ex, y = (y1, ..., yn), and in

xα1 , yα1 := (yα1
1 , ..., yα1

n ).

Therefore, the germ at 1 of the exp function is definable by the same formula ∃yF (x, ex, y) =

0, where the term F is a polynomial in x, ex, y = (y1, ..., yn), and in (x + 1)α1 , (y + 1)α1 :=

((y1 + 1)α1 , ..., (yn + 1)α1).

As ex+1 = exe for all x in a vicinity of 0, we deduce that the germ of the exp germ at 0 is

definable by this last formula up to a constant.

Let u denote the germ at 0 of the exp function.

Desingularization. The restriction of the germ at 0 of exp is definable by a formula of

the form ∃y
∧n+1
i=1 hi(x0, x1, y) = 0, y = (y1, ..., yn) satisfying

∂(h1, ..., hn+1)

∂(x1, y)
(x0, x1, y) 6= 0,

on the points (x0, x1, y) for which hi(x0, x1, y) = 0, i = 1, ..., n+ 1.

Proof of Desingularization. See [12, Section 2.2, Case 2].

2

We can also assume that the terms hj are ”polynomials” on the variables shown or a

constant times a variable and on the functions zα1 where z is either one of the variables shown
or a constant times a variable.

By the implicit function theorem, there exist a functions fi defined in a neighborhood I

of 0 such that hi(x, u(x), f1(x), ..., fn(x)) = 0, i = 1, .., n+ 1, for all x ∈ I .

Also by applying translations to the variables y1, ..., yn and changing accordingly the hi ,

i = 1, .., n+ 1, we can assume that fi(x) > 0 for all x ∈ I .

The functions x; ln(x+ 1), α1ln(x+ 1); ln(f1 + 1), α1 ln(f1 + 1); ...;

ln(fn + 1), α1 ln(fn + 1) are Q-linearly independent comes from the fact that the number α1

is irrational and by taking n minimal such that we have the above formula defining u(x). If
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these functions were not linearly independent over Q , by a linear change of variables we could

decrease the number of variables needed to define u(x), which contradicting the minimality of n .

By Ax’s Theorem in [17], the transcendence degree of

C[x, (ln(x+ 1), α1 ln(x+ 1)), (ln(f1 + 1), α1 ln(f1 + 1)), ..., (ln(fn + 1),

α1 ln(fn + 1)), ex, (x+ 1)α1 , f1, (f1 + 1)α1 , ..., fn, (fn + 1)α1 ] over C is at least 2n+ 4.

So the transcendence degree over C of the ring C[x, f1, ..., fn, e
x, (x+ 1)α1 ,

(f1 + 1)α1 , ..., (fn + 1)α1 ] is at least (2n+ 4)− (n+ 1) = n+ 3.

By ([6], Theorem 26.5 (p. 202) and Theorem 30.3 (1 ⇔ 4)) if we have a functions f1, ..., fn

and polynomials P1(X1, ..., Xn), ..., Pk(X1, ..., Xn)

( say, with k < n), whose Jacobian matrix has maximum rank at the point (f1, ..., fn),

then the transcendence degree of C[f1, ..., fn]/I over C , where I is the ideal generated by

P1(f1, ..., fn), ..., Pk(f1, ..., fn) is at most n− k .

So in our case, we put for all i = 1, ..., n+ 1,

Pi(x, e
x, y1, ..., yn, (x+1)α1 , (y1 +1)α1 , ..., (yn+1)α1) = hi(x, e

x, y1, ..., yn). As the ideal I is null,

we deduce that the transcendence degree of

C[x, ex, f1, ..., fn, (x+ 1)α1 , (f1 + 1)α1 , ..., (fn + 1)α1 ]

over C is at most (2n+ 3)− (n+ 1) = n+ 2.

Which give us the desired contradiction. So we conclude that the exp germ at zero is not

definable in the structure M .

2

By following the proof of theorem 4.1 and for a Q-linearly independent real numbers

α1, ..., αp , it is not hard to see that by deleting the functions α1 ln(f1 + 1), ..., αp ln(f1 + 1), the

transcendence degree decreases just by 1, therefore, we deduce the following theorem to end

this paper.

Theorem 4.2. The germ of the exponential function at the origin is not definable in the

structure (R, xα1 , ..., xαp) for all Q-linearly independent real numbers α1, ..., αp .
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