Decomposition of $n\alpha$-continuity and $n^*\mu_\alpha$-continuity

S. Ganesan*, C. Alexander, M. Sugapriya and A. N. Aishwarya
PG & Research Department of Mathematics,
Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India.
(Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India)

Received: 19 Jul 2020 • Accepted: 03 Aug 2020 • Published Online: 20 Aug 2020

Abstract: The aim of this paper, we introduce the concepts of $n\eta$-sets, $n^{ii}\eta$-sets, $n\eta$-continuity, $n^{ii}\eta$-continuity & to find decomposition of $n\alpha$ continuity & $n^*\mu_\alpha$ continuity repectively in nano topological spaces.

Key words: $n\eta$-sets, $n\eta$-set, $n^{ii}\eta$-set, $n\eta$-continuity, $n^*\eta$-continuity & $n^{ii}\eta$-continuity

1. Introduction

Jayalakshmi and Janaki [5] introduced and studied the notions of nt-sets, nA-sets & nB-sets in nano topological spaces. Recently, Ganesan [4] introduced & studied $n\alpha$B-sets, $n\eta$-sets, $n\eta\zeta$-sets & to find a decomposition of nano continuity. In this paper, we introduce & study the notions of $n\eta$-sets, $n^{ii}\eta$-sets, $n\eta$-continuity, $n^{ii}\eta$-continuity & obtain decomposition of $n\alpha$ continuity & $n^*\mu_\alpha$ continuity. Moreover the study of $n\eta$-sets, $n^{ii}\eta$-sets led to some decomposition nano continuity are extensively developed and used in computer science & digital topology.

2. Preliminaries

Definition 2.1. [7]
If $(J, \tau_R(P))$ is the nano topological space with respect to P where $P \subseteq J$ & if $M \subseteq J$, then

(i) The n-interior of the set M is defined as the union of all n-open subsets contained in M and it is denoted by $ninte(M)$. That is, $ninte(M)$ is the largest n-open subset of M.

(ii) The n-closure of the set M is defined as the intersection of all n-closed sets containing M and it is denoted by $nclo(M)$. That is, $nclo(M)$ is the smallest n-closed set containing M.

Definition 2.2. [7]
A subset M of a space $(J, \tau_R(P))$ is called:

(i) $n\alpha$-closed if $nclo(ninte(nclo(M))) \subseteq M$.

(ii) n-semi-closed if $ninte(nclo(M)) \subseteq M$.

(iii) n-pre-closed if $nclo(ninte(M)) \subseteq M$.

© Asia Mathematika
*Correspondence: asiamathematika@gmail.com
The complements of the above mentioned n-closed are called their respective n-open.

Definition 2.3. A subset M of a space $(J, \tau_R(P))$ is called:

(i) a nt-set [5] if $\text{ninte(nclo}(M)) = \text{ninte}(M)$.

(ii) an nA-set [5] if $M = S \cap G$ where S is n-open and G is a n-regular-closed.

(iii) a nB-set [5] if $M = S \cap G$ where S is n-open and G is a nt-set.

(iv) a n-locally closed set [1] if $M = S \cap G$ where S is n-open and G is n-closed.

(v) an n^αB-set [4] if $M = S \cap G$ where S is n-open and G is an n^α-closed.

(vi) an $n\eta$-set [4] if $M = S \cap G$ where S is n-open and G is an $n\alpha$-closed.

Collection of nt-sets (respectively nA-sets, nB-sets, n-locally closed sets, n^αB-set, $n\eta$-set) in J is noted that nt(J) (respectively nA(J), nB(J), nLC(J), nαB(J), nη(J)).

Definition 2.4. A subset M of a space $(J, \tau_R(P))$ is called

(i) a $n^\hat{g}$-closed [6] if $\text{nclo}(M) \subseteq T$ whenever $M \subseteq T$ and T is n-semi-open in $(J, \tau_R(P))$. The complement of $n^\hat{g}$-closed set is called $n^\hat{g}$-open.

(ii) n*gs-closed [2] if $\text{nsclo}(M) \subseteq T$ whenever $M \subseteq T$ and T is $n^\hat{g}$-open in $(J, \tau_R(P))$. The complement of n*gs-closed set is called n*gs-open.

(iii) $n^*\mu_\alpha$-closed [2] if $\text{n\alpha clo}(M) \subseteq T$ whenever $M \subseteq T$ and T is $n^*\text{gs}$-open in $(J, \tau_R(P))$. The complements of $n^*\mu_\alpha$-closed set is called $n^*\mu_\alpha$-open.

(iv) $n^*\mu_p$-closed [2] if $\text{npclo}(M) \subseteq T$ whenever $M \subseteq T$ and T is $n^*\text{gs}$-open in $(J, \tau_R(P))$. The complements of $n^*\mu_p$-closed set is called $n^*\mu_p$-open.

Proposition 2.1. (i) Every nα-open is $n^*\mu_\alpha$-open [2].

(ii) Every $n^*\mu_\alpha$-open is $n^*\mu_p$-open [2].

(iii) Every $n^*\mu_\alpha$-continuous is $n^*\mu_p$-continuous [3].

Theorem 2.1. (i) Every n-closed is Nt-set [5].

(ii) Every n^α-closed is n-semi-closed [9].

(iii) Every nt-set is nB-set [5].

Theorem 2.2. [5]

(i) M is nt-set iff it is n-semi-closed.

(ii) Intersection two nt-sets is also a nt-set.
3. \(n^r\eta\)-sets & \(n^s\eta\)-sets

Definition 3.1. A subset \(M\) of a space \(J\) is called

(i) an \(n^r\eta\)-set if \(M = S \cap G\) where \(S\) is \(n^s\text{gs-open}\) and \(G\) is \(n\alpha\)-closed.

(ii) an \(n^s\eta\)-set if \(M = S \cap G\) where \(S\) is \(n^s\mu_\alpha\)-open and \(G\) is a \(n\eta\)-set.

Collection of all \(n^r\eta\)-sets (respectively \(n^s\eta\)-sets) in \(J\) will be note that \(n^r\eta(J)\) (respectively \(n^s\eta(J)\)).

Proposition 3.1. Every \(n\eta\)-set is \(n^r\eta\)-set.

Proof. Take \(E\) be \(n\eta\)-set. Then \(E = S \cap G\), where \(S\) is \(n\)-open and \(G\) is \(n\alpha\)-closed. Since every \(n\)-open is \(n^s\text{gs}\) open, \(S\) is \(n^s\text{gs}\) open. Hence \(E\) is \(n^r\eta\)-set.

Example 3.1. Take \(J = \{1, 2, 3, 4\}\) with \(J/ R = \{\{3\}, \{4\}, \{1, 2\}\}\) & \(P = \{2\}\). The \(n\tau_R(P) = \{\phi, \{1, 2\}, J\}\). Then \(n^r\eta\)-sets are \(\phi, J, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}\) & \(n\eta\)-set are \(\phi, J, \{3\}, \{4\}, \{1, 2\}, \{3, 4\}\). However, it is clear that \(\{1, 3\}\) is \(n^r\eta\)-set but it is not \(n\eta\)-set.

Proposition 3.2. Every \(n\alpha\) \(B\)-set is \(n^s\eta\)-set.

Proof. Take \(E\) be \(n\alpha\) \(B\)-set. Then \(E = S \cap G\), where \(S\) is \(n\alpha\)-open and \(G\) is \(n\text{t}\)-set. Since every \(n\alpha\)-open set is \(n^s\mu_\alpha\)-open, \(S\) is \(n^s\mu_\alpha\)-open. Hence \(E\) is \(n^s\eta\)-set.

Example 3.2. Take \(J\) & \(n\tau_R(P)\) see Example 3.1. Then \(n^s\eta\)-set are \(\phi, J, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}\). However, it is clear that \(\{1, 3\}\) is \(n^s\eta\)-set but it is not \(n\alpha\) \(B\)-set.

Proposition 3.3. Every \(n^s\mu_\alpha\)-open set is \(n^s\eta\)-set.

Proof. Using Definitions 2.4(iii) and 3.1(ii).

Example 3.3. Take \(J\) & \(n\tau_R(P)\) see Example 3.2. Then \(n^s\mu_\alpha\)-open are \(\phi, J, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 4\}\). It is clear that \(\{3, 4\}\) is \(n^s\eta\)-set but it is not \(n^s\mu_\alpha\)-open.

Remark 3.1. (i) \(n^r\eta\)-sets & \(n^s\mu_\alpha\)-closed are independent.
(ii) \(n^s\eta\)-sets & \(n^s\mu_\beta\)-closed are independent.

Example 3.4. (i) Take \(J\) & \(n\tau_R(P)\) see Example 3.1. Then \(n^s\mu_\alpha\)-closed are \(\phi, J, \{3\}, \{4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\). However, it is clear that \(\{1, 3, 4\}\) is \(n^s\mu_\alpha\)-closed but not \(n^r\eta\)-set & also it is clear that \(\{1, 2, 3\}\) is \(n^r\eta\)-set but not \(n^s\mu_\alpha\)-closed in \((J, \tau_R(P))\).
(ii) Let \(J\) & \(n\tau_R(P)\) see Example 3.2. Then \(n^s\mu_\beta\)-closed are \(\phi, J, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\). However, it is clear that \(\{1, 3\}\) is \(n^s\mu_\beta\)-closed but not \(n^s\eta\)-set & also it is clear that \(\{1, 2, 4\}\) is \(n^s\eta\)-set but not \(n^s\mu_\beta\)-closed in \((J, \tau_R(P))\).

Remark 3.2. We discuss above results see the diagram.

where none of these implications is reversible as shown by [4].

Theorem 3.1. For a subset \(M\) of a space \(J\), the following conditions are equivalent.
S. Ganesan, C. Alexander, M. Sugapriya and A. N. Aishwarya

(i) M is an \(n^{*}\eta\)-set.

(ii) \(M = S \cap \text{naclo}(M)\) for some \(n^{*}\text{gs-open}\ S\).

Proof. (i) \(\rightarrow\) (ii) Since M is an \(n^{*}\eta\)-set, then \(M = S \cap G\), where S is \(n^{*}\text{gs-open}\) and G is \(n\alpha\) closed. So, \(M \subseteq S\) and \(M \subseteq G\). Hence \(\text{naclo}(M) \subseteq \text{naclo}(G)\). Therefore \(M \subseteq S \cap \text{naclo}(M) \subseteq S \cap \text{naclo}(G) = S \cap G = M\). Thus, \(M = S \cap \text{naclo}(M)\).

(ii) \(\rightarrow\) (i) It is obvious because \(\text{naclo}(M)\) is \(n\alpha\)-closed. (Since M is \(n\alpha\)-closed iff \(M = \text{naclo}(M)\)). \(\square\)

Remark 3.3. Intersection of two \(n^{*}\eta\)-sets is an \(n^{*}\eta\)-set.

Remark 3.4. Union of two \(n^{*}\eta\)-sets need not be an \(n^{*}\eta\)-set.

Example 3.5. Take \(J \& \tau_{R}(P)\) see Example 3.1. However, it is clear that \(\{1, 3\}, \{4\}\) are \(n^{*}\eta\)-sets in \((J, \tau_{R}(P))\) but their union \(\{1, 3, 4\}\) is not an \(n^{*}\eta\)-set in \((J, \tau_{R}(P))\).

Theorem 3.2. For a subset \(M\) of a space \(J\), the following conditions are equivalent:

(i) \(M\) is \(n\alpha\)-closed.

(ii) \(M\) is an \(n^{*}\eta\)-set and \(n^{*}\mu_{\alpha}\)-closed.

Proof. (i) \(\rightarrow\) (ii) This is obvious.

(ii) \(\rightarrow\) (i) Since M is an \(n^{*}\eta\)-set, then using Theorem 3.1, \(M = S \cap \text{naclo}(M)\) where S is \(n^{*}\text{gs-open}\) in J. So, \(M \subseteq S\) and since M is \(n^{*}\mu_{\alpha}\)-closed, then \(\text{naclo}(M) \subseteq S\). Therefore, \(\text{naclo}(M) \subseteq S \cap \text{naclo}(M) = M\). Hence, \(M\) is \(n\alpha\)-closed. \(\square\)

Remark 3.5. Intersection of two \(n^{*}\eta\)-sets is an \(n^{*}\eta\)-set.

Remark 3.6. Union of two \(n^{*}\eta\)-sets need not be an \(n^{*}\eta\)-set.

Example 3.6. Take \(J \& \tau_{R}(P)\) see Example 3.2. However, it is clear that \(\{2\}, \{4\}\) are \(n^{*}\eta\)-sets in \((J, \tau_{R}(P))\) but their union \(\{2, 4\}\) is not an \(n^{*}\eta\)-set in \((J, \tau_{R}(P))\).
Theorem 3.3. For a subset M of a space J, the following conditions are equivalent.

(i) M is $n^*\mu_\alpha$-open.

(ii) M is an n^η-set and $n^*\mu_p$-open.

Proof. Necessity: This is obvious.

Sufficiency: Assume that M is $n^*\mu_p$-open and an n^η-set in J. Then $M = S \cap G$ where S is $n^*\mu_\alpha$-open and G is a n^η-set in J. Take $H \subseteq M$, where H is n^*gs-closed in J. Since M is $n^*\mu_p$-open in J, $H \subseteq npinte(M) = M \cap ninte(\text{ncl}(M)) = (S \cap G) \cap ninte(\text{ncl}(S)) \cap ninte(\text{ncl}(G)) = S \cap G \cap ninte(\text{ncl}(S)) \cap ninte(G)$, since G is a n^η-set. This implies, $H \subseteq ninte(G)$. Note that S is $n^*\mu_\alpha$-open and that $H \subseteq S$. So, $H \subseteq n^\alpha inte(S)$. Therefore, $H \subseteq n^\alpha inte(S) \cap ninte(G) = n^\alpha inte(M)$. Hence M is $n^*\mu_\alpha$-open.

4. n^η-continuity & $n^*\eta$-continuity

Definition 4.1. A map $i : (J, \tau_R(P)) \rightarrow (L, \tau'_R(Q))$ is called:

(i) nA-continuous [10, 11] if $i^{-1}(T)$ is an nA-set in J for each n-open T of L.

(ii) nB-continuous [10, 11] if $i^{-1}(T)$ is an nB-set in J for each n-open T of L.

(iii) n^α-continuous [8] if $i^{-1}(T)$ is an n^α-open in J for each n-open T of L.

(iv) n-LC-continuous [1] if $i^{-1}(T)$ is an n-locally closed in J for each nano open T of L.

(v) $n^\alpha B$-continuous [4] if $i^{-1}(T)$ is an $n^\alpha B$-set in J for each n-open T of L.

(vi) n^η-continuous [4] if $i^{-1}(T)$ is an n^η-set in J for each n-open T of L.

(vii) $n^*\mu_\alpha$-continuous [3] (respectively $n^*\mu_p$-continuous [3]) if $i^{-1}(T)$ is an $n^*\mu_\alpha$-open (respectively $n^*\mu_p$-open) in J for each n-open T of L.

Definition 4.2. A map $i : (J, \tau_R(P)) \rightarrow (L, \tau'_R(Q))$ is called a n^η-continuous (respectively $n^*\eta$-continuous) if $i^{-1}(T)$ is an n^η-set (respectively $n^*\eta$-set) in J for each n-open subset T of L.

Definition 4.3. A map $i : (J, \tau_R(P)) \rightarrow (L, \tau'_R(Q))$ is called a n^η'-continuous if $i^{-1}(T)$ is an n^η'-set in J for each n-closed subset T of L.

Remark 4.1. It is clear that, a map $i : (J, \tau_R(P)) \rightarrow (L, \tau'_R(Q))$ is n^α-continuous iff $i^{-1}(T)$ is an n^α closed set in J for each n-closed T of L.

Proposition 4.1. Every n^η-continuous is n^η'-continuous.

Example 4.1. Take $J \& n^\eta R(P)$ see Example 3.1. Take $L = \{1, 2, 3, 4\}$ with $L/R' = \{\{1\}, \{3\}, \{2, 4\}\}$ and $Q = \{1, 2\}$. Then $n^\eta R(Q) = \{\phi, \{1\}, \{2, 4\}, \{1, 2, 4\}, L\}$. Define $i : (J, \tau_R(P)) \rightarrow (L, \tau'_R(Q))$ be the identity map. However, it is n^η-continuous but not n^η-continuous, since $i^{-1}(\{2, 4\}) = \{2, 4\}$ is not n^η-set.

Proposition 4.2. Every $n^\alpha B$-continuous is $n^*\eta$-continuous.
Example 4.2. Take \(J = \{1, 2, 3\} \), with \(J/ R = \{\{\emptyset\}, \{1, 2\}, \{2, 3\}\} \) & \(P = \{1, 2\} \). Then \(\nu \tau_R(P) = \{\phi, \{1, 2\}\} \). Take \(L = \{1, 2, 3\} \) with \(L/ R' = \{\{1\}, \{2, 3\}\} \) & \(Q = \{1\} \). Then \(\nu \tau_R'(Q) = \{\phi, \{1\}, L\} \). Then \(\nu^* \eta\)-sets are \(\phi, J, \{1\}, \{2\}, \{3\}, \{1, 2\} \) & \(\eta B\)-sets are \(\phi, J, \{3\}, \{1, 2\} \). Define \(i : (J, \tau_R(P)) \rightarrow (L, \tau_R'(Q)) \) be the identity map. However, it is \(\nu^* \eta\)-continuous but not \(\eta B\)-continuous, since \(i^{-1}(\{1\}) = \{1\} \) is not \(\eta B\)-set.

Proposition 4.3. Every \(\nu^* \mu_\alpha\)-continuous is \(\nu^* \eta\)-continuous.

Example 4.3. Take \(J, \nu \tau_R(P) \) & \(i \) see Example 4.2. Take \(L = \{1, 2, 3\} \) with \(L/ R' = \{\{\emptyset\}, \{1, 2\}\} \) & \(Q = \{3\} \). Then \(\nu \tau_R(Q) = \{\phi, \{3\}\} \). Then \(\nu^* \eta\)-sets are \(\phi, J, \{1\}, \{2\}, \{3\}, \{1, 2\} \) & \(\nu^* \mu_\alpha\)-open sets are \(\phi, \{1\}, \{2\}, \{3\}, \{1, 2\} \). Define \(i : (J, \tau_R(P)) \rightarrow (L, \tau_R'(Q)) \) be the identity map. However, it is \(\nu^* \eta\)-continuous but not \(\nu^* \mu_\alpha\)-continuous, since \(i^{-1}(\{1\}) = \{3\} \) is not \(\nu^* \mu_\alpha\)-open set.

Remark 4.2. (i) \(\nu^* \mu_\alpha\) continuity & \(\nu^* \eta\) continuity are independent.
(ii) \(\nu^* \mu_\alpha\) continuity & \(\nu^* \eta\) continuity are independent.
(iii) \(\eta\) continuity & \(\nu^* \eta\) continuity are independent.

Example 4.4. Take \(J, \nu \tau_R(P), L, \nu \tau_R'(Y) \) & \(i \) see Example 4.3. Then \(\nu^* \eta\)-sets are \(\phi, J, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\} \). Define \(i : (J, \tau_R(P)) \rightarrow (L, \tau_R'(Q)) \) be the identity map. However, it is \(\nu^* \eta\)-continuous but not \(\nu^* \mu_\alpha\)-continuous, since \(i^{-1}(\{3\}) = \{3\} \) is not \(\nu^* \mu_\alpha\)-open.

Example 4.5. Take \(J = \{1, 2, 3\} \), with \(J/ R = \{\{\emptyset\}, \{1, 3\}, \{3, 1\}\} \) & \(P = \{1, 3\} \). Then \(\nu \tau_R(P) = \{\phi, \{1, 3\}\} \). Take \(L = \{1, 2, 3\} \) with \(L/ R' = \{\{1\}, \{2, 3\}\} \) & \(Q = \{1, 2\} \). Then \(\nu \tau_R'(Q) = \{\phi, \{1, 2\}\} \). Then \(\nu^* \eta\)-sets are \(\phi, J, \{1\}, \{2\}, \{3\}, \{1, 3\}\) & \(\nu^* \mu_\alpha\)-open sets are \(\phi, J, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\} \). However, it is \(\nu^* \mu_\alpha\)-continuous but not \(\nu^* \eta\)-continuous, since \(i^{-1}(\{1\}) = \{1, 2\} \) is not \(\nu^* \eta\)-set.

Example 4.6. Take \(J = \{1, 2, 3\} \), with \(J/ R = \{\{\emptyset\}, \{1, 3\}, \{3, 2\}\} \) & \(P = \{2, 3\} \). Then \(\nu \tau_R(P) = \{\phi, \{2, 3\}\} \). Take \(L, \nu \tau_R'(Q), \) & \(i \) see Example 4.3. Then \(\nu^* \mu_\alpha\)-open sets are \(\phi, J, \{2\}, \{3\}, \{2, 3\} \) & \(\nu^* \eta\)-set are \(\phi, J, \{1\}, \{2\}, \{3\}, \{2, 3\} \). However, it is \(\nu^* \mu_\alpha\)-continuous but not \(\nu^* \eta\)-continuous, since \(i^{-1}(\{1\}) \) \(\{1, 2\} \) is not \(\nu^* \eta\)-set.

Example 4.7. Take \(J, \nu \tau_R(P), \) & \(i \) see Example 4.3. Take \(L = \{1, 2, 3\} \) with \(L/ R' = \{\{\emptyset\}, \{1, 3\}, \{3, 2\}\} \) & \(Q = \{2, 3\} \). Then \(\nu \tau_R'(Q) = \{\phi, \{2, 3\}, L\} \). Then \(\nu^* \eta\)-sets are \(\phi, J, \{1\}, \{2\}, \{3\}, \{1, 2\} \) & \(\nu^* \mu_\alpha\)-open sets are \(\phi, J, \{1\}, \{2\}, \{1, 2\} \). However, it is \(\nu^* \eta\)-continuous but not \(\nu^* \mu_\alpha\)-continuous, since \(i^{-1}(\{2, 3\}) = \{2, 3\} \) is not \(\nu^* \mu_\alpha\)-open.

Example 4.8. Take \(J, \nu \tau_R(P), L, \nu \tau_R'(Q) \) & \(i \) see Example 4.6. However, it is \(\nu^* \eta\)-continuous but not \(\nu^* \eta\)-continuous, since \(i^{-1}(\{1, 2\}) = \{1, 2\} \) is not \(\nu^* \eta\)-set.

Example 4.9. Take \(J, \nu \tau_R(P), L, \nu \tau_R'(Q) \) & \(i \) see Example 4.5. Then \(\nu^* \eta\)-sets are \(\phi, J, \{1\}, \{2\}, \{3\}, \{1, 3\}\). However, it is \(\nu^* \eta\)-continuous but not \(\nu^* \eta\)-continuous, since \(i^{-1}(\{1, 2\}) = \{1, 2\} \) is not \(\nu^* \eta\)-set.
Remark 4.3. From the above discussions we obtain the following diagram where $A \rightarrow B$ represents A implies B, but not conversely.

Theorem 4.1. Map $i : (J, \tau_R(P)) \rightarrow (L, \tau'_R(Q))$, the following conditions are equivalent.

(i) i is $n\alpha$-continuous.

(ii) i is $n^*\eta^*$-continuous & $n^*\mu_\alpha$-continuous.

Proof. Using Definitions 4.1(7), 4.3, Remark 4.4 & Theorem 3.2, the proof is immediate.

Theorem 4.2. Map $i : (J, \tau_R(P)) \rightarrow (L, \tau'_R(Q))$, the following conditions are equivalent.

(i) i is $n^*\mu_\alpha$-continuous.

(ii) i is $n^*\eta$-continuous & $n^*\mu_p$-continuous.

Proof. Using Theorem 3.3, the proof is immediate.

Acknowledgment

The authors would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions which have helped immensely in improving the quality of the paper.

References

