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Abstract: The aim of this paper, we introduce the concepts of nιη -sets, nιιη -sets, nιη -continuity, nιιη -continuity &

to find decomposition of nα continuity & n∗µ α continuity repectively in nano topological spaces.
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1. Introduction

Jayalakshmi and Janaki [5] introduced and studied the notions of nt-sets, nA-sets & nB-sets in nano topological

spaces. Recently, Ganesan [4] introduced & studied nαB-sets, nη -sets, nηζ -sets & to find a decomposition

of nano continuity. In this paper, we introduce & study the notions of nιη -sets, nιιη -sets, nιη -continuity,

nιιη -continuity & obtain decomposition of nα continuity & n∗µ α continuity. Moreover the study of nιη -sets,

nιιη -sets led to some decomposition nano continuity are extensively developed and used in computer science &

digital topology.

2. Preliminaries

Definition 2.1. [7]

If (J, τR(P )) is the nano topological space with respect to P where P ⊆ J & if M ⊆ J, then

(i) The n-interior of the set M is defined as the union of all n-open subsets contained in M and it is denoted by

ninte(M). That is, ninte(M) is the largest n-open subset of M.

(ii) The n-closure of the set M is defined as the intersection of all n-closed sets containing M and it is denoted by

nclo(M). That is, nclo(M) is the smallest n-closed set containing M.

Definition 2.2. [7]

A subset M of a space (J, τR(P )) is called:

(i) nα -closed if nclo(ninte(nclo(M))) ⊆ M.

(ii) n-semi-closed if ninte(nclo(M)) ⊆ M.

(iii) n-pre-closed if nclo(ninte(M)) ⊆ M.
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(iv) n-regular-closed if nclo(ninte(M)) = M.

The complements of the above mentioned n-closed are called their respective n-open.

Definition 2.3. A subset M of a space (J, τR(P )) is called:

(i) a nt-set [5] if ninte(nclo(M)) = ninte(M).

(ii) an nA-set [5] if M = S ∩ G where S is n-open and G is a n-regular-closed.

(iii) a nB-set [5] if M = S ∩ G where S is n-open and G is a nt-set.

(iv) a n-locally closed set [1] if M = S ∩ G where S is n-open and G is n-closed.

(v) an nαB-set [4] if M = S ∩ G where S is nα -open and G is a nt-set.

(vi) an nη -set [4] if M = S ∩ G where S is n-open and G is an nα -closed.

Collection of nt-sets (respectively nA-sets, nB-sets, n-locally closed sets, nαB-set, nη -set) in J is noted

that nt(J) (respectively nA(J), nB(J), nLC(J), nαB(J), nη (J)).

Definition 2.4. A subset M of a space (J, τR(P )) is called

(i) a nĝ -closed [6] if nclo(M) ⊆ T whenever M ⊆ T and T is n-semi-open in (J, τR(P )). The complement of

nĝ -closed set is called nĝ -open.

(ii) n*gs-closed [2] if nsclo(M) ⊆ T whenever M ⊆ T and T is nĝ -open in (J, τR(P )). The complement of

n*gs-closed set is called n*gs-open.

(iii) n∗µ α -closed [2] if nαclo(M) ⊆ T whenever M ⊆ T and T is n*gs-open in (J, τR(P )). The complement of

n∗µ α -closed set is called n∗µ α -open.

(iv) n∗µ p -closed [2] if npclo(M) ⊆ T whenever M ⊆ T and T is n*gs-open in (J, τR(P )). The complement of

n∗µ p -closed set is called n∗µ p -open.

Proposition 2.1. (i) Every nα-open is n∗µ α -open [2].

(ii) Every n∗µ α -open is n∗µ p -open [2].

(iii) Every n∗µ α -continuous is n∗µ p -continuous [3].

Theorem 2.1. (i) Every n-closed is Nt-set [5].

(ii) Every n-α closed is n-semi-closed [9].

(iii) Every nt-set is nB-set [5].

Theorem 2.2. [5]

(i) M is nt-set iff it is n-semi-closed.

(ii) Intersection two nt-sets is also a nt-set.
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3. nιη -sets & nιιη -sets

Definition 3.1. A subset M of a space J is called

(i) an nιη -set if M = S ∩ G where S is n*gs-open and G is nα -closed.

(ii) an nιιη -set if M = S ∩ G where S is n∗µ α -open and G is a nt-set.

Collection of all nιη -sets (respectively nιιη -sets) in J will be note that nιη (J) (respectively nιιη (J)).

Proposition 3.1. Every nη -set is nιη -set.

Proof. Take E be nη -set. Then E = S ∩ G, where S is n-open and G is nα -closed. Since every n-open is n*gs

open, S is n*gs open. Hence E is nιη -set.

Example 3.1. Take J = {1, 2, 3, 4} with J/ R= {{3}, {4}, {1, 2}} & P = {2}. The nτR(P )= {φ , {1, 2},
J}. Then nιη -sets are φ , J, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3} {2, 4}, {3, 4}, {1, 2, 3}, {1, 2,

4} & nη -set are φ , J, {3}, {4}, {1, 2}, {3, 4}. However, it is clear that {1, 3} is nιη -set but it is not nη -set.

Proposition 3.2. Every nαB-set is nιιη -set.

Proof. Take E be nαB-set. Then E = S ∩ G, where S is nα -open and G is nt-set. Since every nα -open set is

n∗µ α -open, S is n∗µ α -open. Hence E is nιιη -set.

Example 3.2. Take J & nτR(P ) see Example 3.1. Then nιιη -set are φ , J, {1}, {2}, {3}, {4}, {1, 2}, {3,

4}, {1, 2, 3}, {1, 2, 4} & nαB-set are φ , J, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 4} . However, it is

clear that {1} is nιιη -set but it is not nαB-set.

Proposition 3.3. Every n∗µ α -open set is nιιη -set.

Proof. Using Definitions 2.4(iii) and 3.1(ii).

Example 3.3. Take J & nτR(P ) see Example 3.2. Then n∗µ α -open are φ , J, {1}, {2}, {1, 2}, {1, 2, 3},
{1, 2, 4}. It is clear that {3, 4} is nιιη -set but it is not n∗µ α -open.

Remark 3.1. (i) nιη -sets & n∗µ α -closed are independent.

(ii) nιιη -sets & n∗µ p -closed are independent.

Example 3.4. (i) Take J & nτR(P ) see Example 3.1. Then n∗µ α -closed are φ , J, {3}, {4}, {3, 4}, {1, 3,

4}, {2, 3, 4}. However, it is clear that {1, 3, 4} is n∗µ α -closed but not nιη -set & also it is clear that {1, 2,

3} is nιη -set but not n∗µ α -closed in (J, τR(P )).

(ii) Let J & nτR(P ) see Example 3.2. Then n∗µ p -closed are φ , J, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}. However, it is clear that {1, 3} is n∗µ p -closed but not nιιη -set & also it

is clear that {1, 2, 4} is nιιη -set but not n∗µ p -closed in (J, τR(P )).

Remark 3.2. We discuss above results see the diagram.

where none of these implications is reversible as shown by [4].

Theorem 3.1. For a subset M of a space J, the following conditions are equivalent.
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(i) M is an nιη -set.

(ii) M = S ∩ nαclo(M) for some n*gs-open S.

Proof. (i)→ (ii) Since M is an nιη -set, then M = S ∩ G, where S is n*gs-open and G is nα closed. So, M ⊆
S and M ⊆ G. Hence nαclo(M) ⊆ nαclo(G). Therefore M ⊆ S ∩ nαclo(M) ⊆ S ∩ nαclo(G) = S ∩ G =

M. Thus, M = S ∩ nαclo(M).

(ii)→ (i) It is obvious because nαclo(M) is nα -closed. (Since M is nα -closed iff M = nαclo(M)).

Remark 3.3. Intersection of two nιη -sets is an nιη -set.

Remark 3.4. Union of two nιη -sets need not be an nιη -set.

Example 3.5. Take J & nτR(P ) see Example 3.1. However, it is clear that {1, 3}, {4} are nιιη -sets in (J,

τR(P )) but their union {1, 3, 4} is not an nιη -set in (J, τR(P )).

Theorem 3.2. For a subset M of a space J, the following conditions are equivalent:

(i) M is nα-closed.

(ii) M is an nιη -set and n∗µ α -closed.

Proof. (i)→ (ii) This is obvious.

(ii) → (i) Since M is an nιη -set, then using Theorem 3.1, M = S ∩ nαclo(M) where S is n*gs- open in J. So,

M ⊆ S and since M is n∗µ α -closed, then nαclo(M) ⊆ S. Therefore, nαclo(M) ⊆ S ∩ nαclo(M) = M. Hence,

M is nα -closed.

Remark 3.5. Intersection of two nιιη -sets is an nιιη -set.

Remark 3.6. Union of two nιιη -sets need not be an nιιη -set.

Example 3.6. Take J & nτR(P ) see Example 3.2. However, it is clear that {2}, {4} are nιιη -sets in (J,

τR(P )) but their union {2, 4} is not an nιιη -set in (J, τR(P )).
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Theorem 3.3. For a subset M of a space J, the following conditions are equivalent.

(i) M is n∗µ α -open.

(ii) M is an nιιη -set and n∗µ p -open.

Proof. Necessity: This is obvious.

Sufficiency: Assume that M is n∗µ p -open and an nιιη -set in J. Then M = S ∩ G where S is n∗µ α -open and

G is a nt-set in J. Take H ⊆ M, where H is n*gs-closed in J. Since M is n∗µ p -open in J, H ⊆ npinte(M) = M

∩ ninte(nclo(M)) = (S ∩ G) ∩ ninte[nclo(S ∩ G)] ⊆ S ∩ G ∩ ninte(nclo(S)) ∩ ninte(nclo(G)) = S ∩ G ∩
ninte(nclo(S)) ∩ ninte(G), since G is a nt-set. This implies, H ⊆ ninte(G). Note that S is n∗µ α -open and that

H ⊆ S. So, H ⊆ nα inte(S). Therefore, H ⊆ nα inte(S) ∩ ninte(G) = nα inte(M). Hence M is n∗µ α -open.

4. nιη -continuity & nιιη -continuity

Definition 4.1. A map i : (J, τR(P )) → (L, τ ′R(Q)) is called:

(i) nA-continuous [10, 11] if i−1 (T) is an nA-set in J for each n-open T of L.

(ii) nB-continuous [10, 11] if i−1 (T) is an nB-set in J for each n-open T of L.

(iii) nα -continuous [8] if i−1 (T) is an n-α open in J for each n-open T of L.

(iv) n-LC-continuous [1] if i−1 (T) is an n-locally closed in J for each nano open T of L.

(v) nαB-continuous [4] if i−1 (T) is an nαB-set in J for each n-open T of L.

(vi) nη -continuous [4] if i−1 (T) is an nη -set in J for each n-open T of L.

(vii) n∗µ α -continuous [3] (respectively n∗µ p -continuous [3]) if i−1 (T) is an n∗µ α -open (respectively n∗µ p -open)

in J for each n-open T of L.

Definition 4.2. A map i : (J, τR(P )) → (L, τ ′R(Q)) is called a nιη -continuous (respectively nιιη - continuous

if i−1 (T) is an nιη -set (respectively nιιη -set) in J for each n-open subset T of L.

Definition 4.3. A map i : (J, τR(P )) → (L, τ ′R(Q)) is called a n ιηι -continuous if i−1 (T) is an nιη -set in J

for each n-closed subset T of L.

Remark 4.1. It is clear that, a map i : (J, τR(P )) → (L, τ ′R(Q)) is nα-continuous iff i−1 (T) is an nα

closed set in J for each n-closed T of L.

Proposition 4.1. Every nη -continuous is nιη -continuous.

Proof. Using Proposition 3.1.

Example 4.1. Take J & nτR(P ) see Example 3.1. Take L = {1, 2, 3, 4} with L/ R’= {{1}, {3}, {2, 4}}
and Q= {1, 2}. Then nτ ′R(Q) = {φ , {1}, {2, 4}, {1, 2, 4}, L}. Define i : (J, τR(P )) → (L, τ ′R(Q)) be the

identity map. However, it is nιη -continuous but not nη -continuous, since i−1 ({2, 4})= {2, 4} is not nη -set.

Proposition 4.2. Every nαB-continuous is nιιη -continuous.

113



S. Ganesan, C. Alexander, M. Sugapriya and A. N. Aishwarya

Proof. Using Proposition 3.2.

Example 4.2. Take J = {1, 2, 3}, with J/ R= {{3}, {1, 2}, {2, 1}} & P= {1, 2}. Then nτR(P ) = {φ ,

{1, 2}, J}. Take L = {1, 2, 3} with L/ R’= {{1}, {2, 3}} & Q = {1}. Then nτ ′R(Q) = {φ , {1}, L}. Then

nιιη -sets are φ , J, {1}, {2}, {3}, {1, 2} & nαB-sets are φ , J, {3}, {1, 2}. Define i : (J, τR(P )) → (L,

τ ′R(Q)) be the identity map. However, it is nιιη -continuous but not nαB-continuous, since i−1 ({1})= {1} is

not nαB-set.

Proposition 4.3. Every n∗ µ α -continuous is nιιη -continuous.

Proof. Using Proposition 3.3.

Example 4.3. Take J, nτR(P ) & i see Example 4.2. Take L = {1, 2, 3} with L/ R’= {{3}, {1, 2}} & Q =

{3}. Then nτ ′R(Q) = {φ , {3}, L}. Then nιιη -sets are φ , J, {1}, {2}, {3}, {1, 2} & n∗µ α -open sets are φ ,

J, {1}, {2}, {1, 2}. Define i : (J, τR(P )) → (L, τ ′R(Q)) be the identity map. However, it is nιιη -continuous

but not n∗ µ α -continuous, since i−1 ({3})= {3} is not n∗ µ α -open set.

Remark 4.2. (i) n∗ µ p continuity & nιιη continuity are independent.

(ii) n∗ µ α continuity & n ιηι continuity are independent.

(iii) nιη continuity & n ιηι continuity are independent.

Example 4.4. Take J, nτR(P ) , L, nτ ′R(Y ) & i see Example 4.3. Then nιιη -sets are φ , J, {1}, {2}, {3},
{1, 2} & n∗ µ p -open set are φ , J, {1}, {2}, {1, 2}, {1, 3}, {2, 3}. Define i : (J, τR(P )) → (L, τ ′R(Q))

be the identity map. However, it is nιιη -continuous but not n∗ µ p -continuous, since i−1 ({3})= {3} is not

n∗ µ p -open.

Example 4.5. Take J = {1, 2, 3}, with J/ R= {{2}, {1, 3}, {3, 1}} & P = {1, 3}. Then nτR(P ) = {φ , {1,

3}, J}. Take L = {1, 2, 3} with L/ R’= {{3}, {1, 2}, {2, 1}} & Q = {1, 2}. Then nτ ′R(Q) = {φ , {1, 2}, L}.
Then nιιη -sets are φ , J, {1}, {2}, {3}, {1, 3} & n∗ µ p -open sets are φ , J, {1}, {3}, {1, 2}, {1, 3}, {2, 3}.
However, it is n∗ µ p -continuous but not nιιη -continuous, since i−1 ({1, 2})= {1, 2} is not nιιη -set.

Example 4.6. Take J = {1, 2, 3}, with J/ R= {{1}, {2, 3}, {3, 2}} & P= {2, 3}. Then nτR(P ) = {φ , {2,

3}, J}. Take L, nτ ′R(Q) , & i see Example 4.3. Then n∗ µ α -open sets are φ , J, {2}, {3}, {2, 3} & nιη -set

are φ , J, {1}, {2}, {3}, {2, 3}. However, it is n∗ µ α -continuous but not n ιηι -continuous, since i−1 ({1, 2})
= {1, 2} is not nιη -set.

Example 4.7. Take J, nτR(P ) , & i see Example 4.3. Take L = {1, 2, 3} with L/ R’= {{1}, {2, 3}, {3, 2}}
& Q = {2, 3} . Then nτ ′R(Q) = {φ , {2, 3}, L}. Then nιη -sets are φ , J, {1}, {2}, {3}, {1, 2} & n∗ µ α -open

sets are φ , J, {1}, {2}, {1, 2}. However, it is n ιηι -continuous but not n∗ µ α -continuous, since i−1 ({2, 3})=

{2, 3} is not n∗ µ α -open.

Example 4.8. Take J, nτR(P ) , L, nτ ′R(Q) & i see Example 4.6. However, it is nιη -continuous but not

n ιηι -continuous, since i−1 ({1, 2})= {1, 2} is not nιη -set.

Example 4.9. Take J, nτR(P ) , L, nτ ′R(Q) & i see Example 4.5. Then nιη -sets are φ , J, {1}, {2}, {3}, {1,

3}. However, it is n ιηι -continuous but not nιη -continuous, since i−1 ({1, 2})= {1, 2} is not nιη -set.
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Remark 4.3. From the above discussions we obtain the following diagram where A→B represents A implies

B, but not conversely.

Theorem 4.1. Map i : (J, τR(P )) → (L, τ ′R(Q)), the following conditions are equivalent.

(i) i is nα-continuous.

(ii) i is n*η∗ -continuous & n∗ µ α -continuous.

Proof. Using Definitions 4.1(7), 4.3, Remark 4.4 & Theorem 3.2, the proof is immediate.

Theorem 4.2. Map i : (J, τR(P )) → (L, τ ′R(Q)), the following conditions are equivalent.

(i) i is n∗ µ α -continuous.

(ii) i is nιιη -continuous & n∗ µ p -continuous.

Proof. Using Theorem 3.3, the proof is immediate.
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